spcl.inf.ethz.ch

ETH:zurich e i 4 : 3 S 3 @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 2: Processes

11-Year Old Linux Kernel Local Privilege Escalation Flaw

Sl JJ».- Dlscovered

in Share b

CVE-2017-6074 Yet Another Nasty

Linux kernel Bug

1OV SRR P ROVEENaTTT

IF SOMEONE. STEALS MY LAPTOP WHILE IT'M
(OGGED N, THEY CAN RERD MY EMAIL, TRKE MY =
MONEY, AND IMPERSONATE ME TO MY FRIENDS,

BUT AT LEAST THEY CANT INSTALL
DRIVERS WITHOUT MY PERMISSION.

© source: xkcd com

= Another privilege-escalation vulnerability has been discovered in Linux kernel that dates back to 2005

IR T FRAE T T ———

and affects major distro of the Linux operating system, including Redhat, Debian, OpenSUSE, and Ubuntu.

Qver a decade old Linux Kernel bug (CVE-2017-6074) has been discovered by security researcher Andrey
Konovalov in the DCCP (Datagram Congestion Control Protocal) implementation using Syzkaller, a kernel

fuzzing tool released by Google.

The vulnerability is a use-after-free flaw in the way the Linux kernel's "DCCP protocol implementation
freed SKB (socket buffer) resources for a DCCP_PKT_REQUEST packet when the IPV6_RECVPKTINFO option

is set on the socket.”

;—'i' R e |

spcl.inf.ethz.ch

ETH:zurich 7 A7 ¥ @spcl_eth

Last time: introduction

Setting the date to 1 January 1970 will

brick your iPhone, iPad or iPod touch
February 12, 2016

Date bug will prevent 64-bit iOS devices from booting up, rendering them
inoperable even through fail-safe restore methods using iTunes

° Introduction: Why? —

 Roles of the OS
» Referee
* [lllusionist
* Glue

e Structure of an OS

8 Date bug bricks iPhones locking them in a boot loop if turned off. Photograph: Alvy / Microsiervos/Flickr

Manually setting the date of your iPhone or iPad to 1 January 1970, or tricking
your friends into doing it, will cause it to get permanently stuck while trying to
boot back up if it’s switched off.

The bug within Apple’s date and time settings within iOS causes such an issue
that users are reporting that the fail-safe restore techniques using iTunes are not
able to repair the problem.

o : spcl.inf.ethz.ch
ETHziirich N TN Y

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

. . . P spcl.inf.ethz.ch
ETHzurich RV e /&&2' 3 @spcl_eth

2

General OS structure

. . Server process
Application Application (daemon)
System Library System Library System Library
Syst I
yStEmm calls User mode

Privileged mode

Sy >

o : G spcl.inf.ethz.ch
ETH:zurich = /ﬁ&’ W @spcl_eth

Kernel

= That part of the OS which runs in privileged mode
= Large part of Unix and Windows (except libraries)
= Small part of L4, Barrelfish, etc. (microkernels)
= Does not exist in some embedded systems

= Also known as:
* Nucleus, nub, supervisor, ...

. . , G spcl.inf.ethz.ch
ETH:zurich = /ﬁ&’ W @spcl_eth

2

The kernel is a program!

= Kernel is just a (special) computer program.
= Typically an event-driven server.
= Responds to multiple entry points:

= System calls

= Hardware interrupts
= Program traps

= May also include internal threads.

. . . P spcl.inf.ethz.ch
ETHzurich RV e /&&2' 3 @spcl_eth

General OS structure

Application Application Server process

(daemon)
(System Library [System Library J | System Library
Syst Il
ystem cafis User mode

Privileged mode

Kernel

o : spcl.inf.ethz.ch
ETHiirich s TN Y

System Libraries

= Convenience functions
= printf(), etc.
= Common functionality

= System call wrappers
= Create and execute system calls from high-level languages
» See ‘man syscalls’ on Linux

ETHzurich

spcl.inf.ethz.ch
/ 7 " 9 @spcl_eth

General OS structure

2

Privileged mode

. L Server process
Application Application (daemon)
System Library System Library ystem Librar
Syst I
_lys em cafls User mode
Kernel

o : spcl.inf.ethz.ch
ETHiirich s TN Y

Daemons

= Processes which are part of the OS
= Microkernels: most of the OS
» Linux: increasingly large quantity

= Advantages:
= Modularity, fault tolerance
= Easier to schedule...

spcl.inf.ethz.ch

ETH:zurich (Y 7 Ax ¥ @spcl_eth

Entering and exiting the kernel

11

s o : i - spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

When is the kernel entered?

= System startup and ...

= Exception (aka. trap): caused by user program
= Interrupt: caused by “something else”

= System calls

= Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)
= Division by zero
= Fork
* |ncoming network packet
= Segmentation violation
* Read
» Keyboard input /

12

o Sy T , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

Recall: System Calls

= RPCto the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

User process Execute
P —- Process resumes
runs syscall

User mode

Privileged mode

Execute kernel
code

System calls 13

o S G s , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

= Passed in processor registers

= Stored in memory (address (pointer) in register)
= Pushed on the stack

= System library (libc) wraps as a C function
= Kernel code wraps handler as C call

14

o : G spcl.inf.ethz.ch
ETH:zurich : /ﬁ&l W @spcl_eth

2

When is the kernel exited?

= Creating a new process
* Including startup

= Resuming a process after atrap
= Exception, interrupt or system call

= User-level upcall
= Much like an interrupt, but to user-level

= Switching to another process

15

spcl.inf.ethz.ch

ETH:zurich s /Y 7 A\x o @spcl_eth

Processes

16

. . : G ; spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

2

Process concept

Q: What is the relation between a process and a program?
= A process is the execution of a program with restricted rights.

= Virtual machine, of sorts

= On older systems:
» Single dedicated processor
» Single address space
= System calls for OS functions

= |n software:
computer system = (kernel + processes)

17

o : G spcl.inf.ethz.ch
ETH:zurich : /ﬁ&l W @spcl_eth

2

Process ingredients

= Virtual processor
» Address space
» Registers
= |nstruction pointer / program counter

= Program text (object code)

= Program data (static, heap, stack)

= OS “stuff”;
= Open files, sockets, CPU share,
= Security rights, etc.

18

o S G s , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

2

Process address space

7EFFEFEE Should look
familiar ...

Stack

(addresses are examples: some
machines used the top address
bit to indicate kernel mode)

BSS

Data

Text

00000000

19

. : G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

Process lifecycle

created
preemption

runnable
(ready)

dispatch

blocked
(waiting)

/0O

completes operation

terminated

20

. . : G ; spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

2

Multiplexing

= OStime-division multiplexes processes
= Or space-division on multiprocessors

= Each process has a Process Control Block (PCB)
» |n-kernel data structure
= Holds all virtual processor state
|dentifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, etc.

21

T : g oy : spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

Process control block

& >
S e
5 Stack qE)
E
= ik
)
! ~ (other kernel
@ data structures)
o
o
BSS
Process
T Control
Text Block

22

o : G spcl.inf.ethz.ch
ETH:zurich = /ﬁ&’ W @spcl_eth

Process switching

Process A Kernel Process B
[Process A executes]
| savestate to PCB(A)
<)
= [Kernel executes]l
=
Restore from PCB(B)
[Process B executes]
Save state to PCB(B) <=
[Kernel executes]l
_— Restore from PCB(A)
v [Process A executes]

23

spcl.inf.ethz.ch

ETH:zurich (Y 7 A7 ¥ @spcl_eth

Process Creation

24

. : G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

Process creation

= Bootstrapping problem. Need.:
= Code to run
= Memory torunitin
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

25

ETHzurich

spcl.inf.ethz.ch
/ " 9 @spcl_eth

Process creation on Windows
Did it work?
/

BOOL CreateProcess (

in opt LPCTSTR ApplicationName,
inout opt LPTSTR CommandLine, :}'VVhat¥3run?
in opt LPSECURITY ATTRIBUTES ProcessAttributes,
in opt LPSECURITY ATTRIBUTES ThreadAttributes, L What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags, B
in opt LPVOID Environment,
in opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS INFORMATION ProcessInformation
\ The result
Moral: the parameter space is large!

26

o S G s , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

Unix fork () and exec ()

Dramatically simplifies creating processes:
1. fork (): creates “child” copy of calling process
2. exec (): replaces text of calling process with a new program

3. Thereis no “CreateProcess(...)”.

Unix is entirely constructed as a family tree of such processes.

spcl.inf.ethz.ch

ETHzurich 2 YT -y @spcl_eth

Unix as a process tree

PFID PID PGID SID TTY TPGID STAT UID TIME COMMAND [~
0 1 1 17 -1 5= 0 o0l Sshindinit
1 437 436 4368 7 -15 0 000 upstart-udev-bridge —-daemon
1 433 4323 433 7 -1 S<= 0 00 udewd -—daemon
433 2085 435 439 ¢ -1 5< 0 oe0n M udewd ——daemon
433 2096 439 439 ¢ -1 5< 0 D00 M udewd ——daeman
1 E&F BRY BRY 7 -1 5= 0 000 dd be=1 if=/procskmeg of=4varsrundrayslogdk
1 EBR4 BRI EH9 Y -1 51 101 000 rayslogd -cd
1 E7% E/S5 £ 7 -1 S= 108 0:03 dbus-daemon —-zystem -—fork
29 745 T4 F4h 7 -1 S= 110 000 M awahi-daemon: chroot helper - .
1 73 731 TIL Y -1 5 111 0302 hald --daemon=ues Exercise:
731 BRI VIl VI Y -15 0 oe0n M hald-runner
gh3 dodd FI1 VI Y -15 000 W fusrdlibshalshald-addon-rflill-kill Work Out
ge3 dods 731 VI Y -15 o000 _ Fuzrdlibshal /hald-addon-leds
ghs 1060 FA1 0 FEL Y -15 o000 “W_ Juzrslibshal Ahald-addon-generic-hac
ahs 1074 FAL AL Y -1 1 0 0l “_ hald-addon-ztorage: polling #dews=d hOW to do
gms 1o8s FIL ALY -15 o000 “_ hald-addon-input: Listening on Adev .
853 1100 731 73 7 -1 5 0 000 Y. fusr/lib‘hal shald-addon-cpufreq thIS on yOUI‘
gms 1dod F3L AL -15 111 o0 “_ hald-addon-acpi: listening on acpid f . .
1 740 740 40 7 -1 5zl 0 0:02 HetworkManager
740 1463 1483 V40 Y -15 0o N Sshinddhclient -d —=f AusrdlibdNetworkH avorlte UnIX
1 7 7Rl Vel -1 5= 0 000 gdn-binary 5
b1 985 TRl YRL Y -15 o0 s AusedlibAgdesgdn-zimple-slave ——dizplay Or Llnux
980 1102 1102 1102 tty? 1102 Rs+ oo 342 W Jusrdbindd 10 -br -—werboze —auth Au .
985 1345 751 751 7 -15 0 00 _ fusrdlibAgdndodn-sess ion—worker maChlne_ .
1346 1361 13681 1361 7 -1 521 1000 Q00 Y_ ghome-zession
1261 1413 1413 1413 7 -1 S= 1000 000 YW_ Suzrdbindssh-agent Susrdbin
1561 14468 1446 1448 7 -1 S= 1000 a0 “W_ Juzrsbinszeahoree-agent —-e
1361 1789 1361 13B1 7 -15 1000 000 “_ /bindsh Auzsrdbindcompiz
1789 1904 1361 1381 7 -1R 100 oOxd4a [“_ Auzrsbindcompiz,real —-
1904 1934 1984 1984 7 -1 5= 1000 000 I “_ /bindsh - Fusrsbin
1934 1935 1984 1984 7 -15 o000 o311 I S Auzrdbindgtk-wi
1361 1905 1361 13E1 7 -15 1000 016 “_ gnome—panel
1361 1907 1361 1361 7 -15 1000 04 _ nautilus
1261 1912 1361 1361 7 -15 1000 00l _ gnomE-poner—manager
1361 1913 1361 1361 7 -1 51 1000 0300 W SusrdlibdevolutionsZ, 284 ewn
1361 1916 1361 13E1 7 -15 1000 0200 _ FAusrdlibdpolicykit-1-gnome/
1361 1917 1361 1381 7 -15 1000 0300 _ bluetooth-applet
1261 1918 1361 1361 7 -15 1000 00l “_ update-notifier ——startup—d
1261 1521 1361 1361 7 -15 1000 000 “_ puthon Jusr/sharessysten-col =
1361 1931 1361 13B1 7 -15 1000 0200 _ FusrdlibAgnome—disk-utility
helene: ,.ce-2,6,31/arch/x86/ 143>

28

. e T S e TN spcl.inf.ethz.ch
ETH:zirich ~ Z‘dﬁ’ W @spcl_eth

Fork In action

_ Return code from
pid_t p = fork(); fork() tells you
if (p<0) { whether you're in the

// Error.. parent or child
exit (-1) ; (cf. setimp())

} else if ((p == 0) {
// We’re in the child
execlp (“/bin/1ls”, “1ls”, NULL) ;
} else {
// We’re a parent.
// p is the pid of the child
wait (NULL) ;

exit(0); Child process can'’t
} actually be cleaned
up until parent
“‘waits” for it.

29

o S G s , spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

Process state diagram for Unix

preemption
forked It really is

called a
runnable
(ready)

Zombie

"

/O /O
completes blocked operation
(waiting) parent
dead calls wait()
(and gone)

30

spcl.inf.ethz.ch

ETH:zurich (Y 7 A7 ¥ @spcl_eth

Kernel Threads

31

. : G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

How do threads fit in?

= |t depends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

= Do NOT confuse this with hardware threads/SMT/Hyperthreading
* In these, the CPU offers more physical resources for threads!

32

. . , G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
= Much asinaJVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

33

. . : G ; spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

Process switching

Process A Kernel Process B
[Process A executes]
N TS epm—— PCB(A)
2 What's =g
E happening
here? Restore from PCB(B)
A thread?
[Process B executes]
Save state to PCB(B) <
[Kernel executes]l
/ Restore from PCB(A)
4 [Process A executes]

34

. . . L e spcl.inf.ethz.ch
ETHzurich RV e /&&2' 3 @spcl_eth

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6! edition has a kernel stack per process
= Arguably complicates design
= Q. On which stack does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!

» Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

35

spcl.inf.ethz.ch

ETH:zurich oy > ~ @spel_eth

Process switching revisited

Process A Kernel stack A Kernel stack B| Process B
[Kernel stack O

== Save to PCB(A)

!

Decide to
switch
process
For a kernel with \ Pick
multiple kernel process to run S
witchn 1o
stacks T o
stack B
With cleverness, Restore
can sometimes PCB(B)
run scheduler on T ——— —_—
current process’
kernel stack.

36

. . S G ; spcl.inf.ethz.ch
ETH ziirich 3 TN Y

System calls in more detalil

: We can now say in more detail what happens during a system
call

- Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

- Linux:
. Good old int 0x80 or Ox2e (software interrupt, syscall number in EAX)
Set up registers and call handler
. Fast system calls (sysenter/sysexit, >Pentium II)
CPU sets up registers automatically

http://www.int80h.org/ © 37

http://www.int80h.org/

o : spcl.inf.ethz.ch
ETHziirich N TN Y

2

Performing a system call

In user space:
1. Marshall the arguments somewhere safe
2 Saves registers
3. Loads system call number
4

Executes SYSCALL instruction
(or SYSENTER, or INT 0x80, or..)

And?

o1

38

. . S G ; spcl.inf.ethz.ch
ETH ziirich 3 TN Y

System calls in the kernel

& Kernel entered at fixed address
. Privileged mode is set

- Need to call the right function and return, so:
1. Save user stack pointer and return address
— In the Process Control Block
Load SP for this process’ kernel stack
Create a C stack frame on the kernel stack
Look up the syscall number in a jump table
Call the function (e.g., read (), getpid (), open(), etc.)

ok wb

39

. . S G : spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

2

Returning in the kernel

- When function returns:
1. Load the user space stack pointer

2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary

3. Execute “syscall return” instruction
: Result is execution back in user space, on user stack
: Alternatively, can do this to a different process...

40

spcl.inf.ethz.ch

ETH:zurich /Y 7 A\x o @spcl_eth

User-space threads

41

T : g oy : spcl.inf.ethz.ch
ETHzurich) /&&z' 3 @spcl_eth

From now on assume:

= Previous example was Unix 6" Edition:
= Which had no threads per se, only processes
= j.e., Process < Kernel stack

= From now on, we’ll assume:
» Multiple kernel threads per CPU
= Efficient kernel context switching

= How do we implement user-visible threads?

42

. . , G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

What are the options?

1. Implement threads within a process (one kernel thread)
2. Multiple kernel threads in a process
3. Some combination of the above

& and other more unusual cases we won’t talk about...

43

. . S G : spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

2

Many-to-one threads

= Early “thread libraries”
» Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
» aka. lightweight threads, tasks (differences in control)
= No kernel support required
= Also (confusingly) “Lightweight Processes”

44

==

S
Cerur O

o .y S f Sh spcl.inf.ethz.ch
ETHzurich WV g e 9 @spcl_eth

Address space layout for user level threads

Thread 1 stack
Stack + L

i)

Thread 3 stack
Thread 2 stack

Just
BSs allocate BSS
Data on the Data
heap
Text Text

46

. : G spcl.inf.ethz.ch
ETHzurich X /‘ﬁ&l W @spcl_eth

2

One-to-one user threads

= Every user thread is/has a kernel thread.

= Equivalent to:
= multiple processes sharing an address space
» Except that “process” now refers to a group of threads

= Most modern OS threads packages:
» Linux, Solaris, Windows XP, MacOSX, etc.

a7

spcl.inf.ethz.ch

ETHziirich N e) I N> o @spcl et

One-to-one user threads

SIS 8EE

S

User

Kernel

48

ETHzurich

spcl.inf.ethz.ch

" 9 @spcl_eth

One-to-one user threads

Stack

BSS

Data

Text

Thread 1 stack

Ll

Thread 2 stack

Ll

Thread 3 stack

Ll

i)

BSS

Data

Text

49

ETHzurich

Comparison

User-level threads

Cheap to create and
destroy

Fast to context switch

Can block entire process
= Not just on system calls

spcl.inf.ethz.ch
/ / 7 " 9 @spcl_eth

2

One-to-one threads

Memory usage (kernel
stack)

Slow to switch
Easier to schedule
Nicely handles blocking

50

. . S G : spcl.inf.ethz.ch
ETH ziirich 2 e S TN Y

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Only way to go for a multiprocessor
= |.e., pretty much everything these days

= Can “pin” user thread to kernel thread for
performance/predictability

= Thread migration costs are “interesting”...

51

ETHzurich

Many-to-many threads

SIS 8 S

=
- DTN
S)s

Kernel

VV <
VAVin
VAV,

52

. . : G spcl.inf.ethz.ch
ETHzurich X — /\'j}ﬁ'&z W @spcl_eth

Next week

= Synchronization:

= How to implement those useful primitives
= Interprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

53

