
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating

Systems Chapter 12: Reliable

Storage, NUMA & The Future

Source: xkcd

spcl.inf.ethz.ch

@spcl_eth

Last lecture -- basic exam tips

 First of all, read the instructions

 Then, read the whole exam paper through

 Look at the number of points for each question

 This shows how long we think it will take to answer!

 Find one you know you can answer, and answer it

 This will make you feel better early on.

 Watch the clock!

 If you are taking too long on a question, consider dropping it and moving

on to another one.

 Always show your working

 You should be able to explain each summary slide

 Tip: form learning groups and present the slides to each other

 Do NOT overly focus on the quiz questions!

 Ask TAs if there are questions

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

 Receiver side scaling randomizes on a per-packet basis

 Virtual machines can be used to improve application performance

 Virtual machines can be used to consolidate servers

 A hypervisor implements functions similar to a normal OS

 If a CPU is strictly virtualizable, then OS code execution causes nearly no

overheads

 x86 is not strictly virtualizable because some instructions fail when

executed in ring 1

 x86 can be virtualized by binary rewriting

 A virtualized host operating system can write the hardware PTBR directly

 Paravirtualization does not require changes to the guest OS

 A page fault with shadow page tables is faster than nested page tables

 A page fault with writeable page tables is faster than shadow page tables

 Shadow page tables are safer than writable page tables

 Shadow page tables require paravirtualization

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Virtualizing Devices

 Familiar by now: trap-and-emulate

 I/O space traps

 Protect memory and trap

 “Device model”: software model of device in VMM

 Interrupts → upcalls to Guest OS

 Emulate interrupt controller (APIC) in Guest

 Emulate DMA with copy into Guest PAS

 Significant performance overhead!

spcl.inf.ethz.ch

@spcl_eth

Paravirtualized devices

 “Fake” device drivers which communicate efficiently with VMM

via hypercalls

 Used for block devices like disk controllers

 Network interfaces

 “VMware tools” is mostly about these

 Dramatically better performance!

spcl.inf.ethz.ch

@spcl_eth

Networking

 Virtual network device in the Guest VM

 Hypervisor implements a “soft switch”

 Entire virtual IP/Ethernet network on a machine

 Many different addressing options

 Separate IP addresses

 Separate MAC addresses

 Network Address Translation (NAT)

 Etc.

spcl.inf.ethz.ch

@spcl_eth

Where are the real drivers?

1. In the Hypervisor

 E.g., VMware ESX

 Problem: need to rewrite device drivers (new OS)

2. In the console OS

 Export virtual devices to other VMs

3. In “driver domains”

 Map hardware directly into a “trusted” VM

Device Passthrough

 Run your favorite OS just for the device driver

 Use IOMMU hardware to protect other memory from driver VM

4. Use “self-virtualizing devices”

spcl.inf.ethz.ch

@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device

Manager &

Control s/w

Native

Device

Drivers

VM0

GuestOS
(XenLinux)

Unmodified

User

Software

VM1

SMP

GuestOS
(XenLinux)

Unmodified

User

Software

Front-End

Device Drivers

VM2

Unmodified

GuestOS

(WinXP)

Unmodified

User

Software

Front-End

Device Drivers

VM3

Safe HW IF

Front-End

Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch

@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device

Manager &

Control s/w

Native

Device

Drivers

VM0

GuestOS
(XenLinux)

Unmodified

User

Software

VM1

SMP

GuestOS
(XenLinux)

Unmodified

User

Software

Front-End

Device Drivers

VM2

Unmodified

GuestOS

(WinXP)

Unmodified

User

Software

Front-End

Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End

Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch

@spcl_eth

Xen 3.x Architecture

Xen Virtual Machine Monitor

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

GuestOS
(XenLinux)

Device

Manager &

Control s/w

Native

Device

Drivers

VM0

GuestOS
(XenLinux)

Unmodified

User

Software

VM1

SMP

GuestOS
(XenLinux)

Unmodified

User

Software

Front-End

Device Drivers

VM2

Unmodified

GuestOS

(WinXP)

Unmodified

User

Software

Front-End

Device Drivers

VM3

Safe HW IF

Virtual switch

Front-End

Device Drivers

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch

@spcl_eth

Remember this card?

spcl.inf.ethz.ch

@spcl_eth

SR-IOV

 Single-Root I/O Virtualization

 Key idea: dynamically create new “PCIe devices”

 Physical Function (PF): original device, full functionality

 Virtual Function (VF): extra “device”, limited funtionality

 VFs created/destroyed via PF registers

 For networking:

 Partitions a network card’s resources

 With direct assignment can implement passthrough

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Virtual

function
Physical function

PCIe

IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Virtual

function
Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Virtual

function

Virtual

function
Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Virtual

function

Virtual

function

Virtual

function
Physical function

PCIe

IOMMU

VMM

VM

VF driver

VM

VF driver

VM

VF driver

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth

Self-virtualizing devices

 Can dynamically create up to 2048

distinct PCI devices on demand!

 Hypervisor can create a virtual NIC for each VM

 Softswitch driver programs “master” NIC to demux packets to each virtual

NIC

 PCI bus is virtualized in each VM

 Each Guest OS appears to have a “real” NIC, talks directly to the real

hardware

spcl.inf.ethz.ch

@spcl_eth

Reliable Storage

OSPP Chapter 14

spcl.inf.ethz.ch

@spcl_eth

Reliability and Availabilty

A storage system is:

 Reliable if it continues to store data and can read and write it.

 Reliability: probability it will be reliable for some period of

time

 Available if it responds to requests

 Availability: probability it is available at any given time

spcl.inf.ethz.ch

@spcl_eth

What goes wrong?

1. Operating interruption: Crash, power failure

 Approach: use transactions to ensure data is consistent

 Covered in the databases course

 See book for additional material

Media failure

 Approach: use redundancy to tolerate loss of media

 E.g. RAID storage

 Topic for today

spcl.inf.ethz.ch

@spcl_eth

File system transactions

 Not widely supported

 Only one atomic operation in POSIX:

 Rename

 Careful design of file system data structures

 Recovery using fsck

 Superseded by transactions

 Internal to the file system

 Exposed to applications

spcl.inf.ethz.ch

@spcl_eth

What goes wrong?

1. Operating interruption: Crash, power failure

 Approach: use transactions to ensure data is consistent

 Covered in the databases course

 See book for additional material

2. Loss of data: Media failure

 Approach: use redundancy to tolerate loss of media

 E.g., RAID storage

 Topic for today

spcl.inf.ethz.ch

@spcl_eth

Media failures 1: Sector and page failures

Disk keeps working, but a sector doesn’t

 Sector writes don’t work, reads are corrupted

 Page failure: the same for Flash memory

Approaches:

1. Error correcting codes:

 Encode data with redundancy to recover from errors

 Internally in the drive

2. Remapping: identify bad sectors and avoid them

 Internally in the disk drive

 Externally in the OS / file system

spcl.inf.ethz.ch

@spcl_eth

Caveats

 Nonrecoverable error rates are significant

 And getting more so!

 Nonrecoverable error rates are not constant

 Affected by age, workload, etc.

 Failures are not independent

 Correlation in time and space

 Error rates are not uniform

 Different models of disk have different behavior over time

spcl.inf.ethz.ch

@spcl_eth

Seagate Barracuda 3TB,

7200rpm, 64MB, 3TB, SATA-3

Price today: CHF 119,95

(last year: EUR 93,50 (only amazon))

(in 2015 CHF 119,-)

(in 2014 CHF 105,-)

(in 2013 CHF 150,-)

A well-respected disk available now from pcp.ch

spcl.inf.ethz.ch

@spcl_eth

Specifications (from manufacturer’s website)

Persistent

errors that are

not masked by

coding inside

the drive

spcl.inf.ethz.ch

@spcl_eth

Unrecoverable read errors

Lots of assumptions:

Independent errors,

etc.

spcl.inf.ethz.ch

@spcl_eth

Media failures 2: Device failure

 Entire disk (or SSD) just stops working

 Note: always detected by the OS

 Explicit failure  less redundancy required

 Expressed as:

 Mean Time to Failure (MTTF)

(expected time before disk fails)

 Annual Failure Rate = 1/MTTF

(fraction of disks failing in a year)

spcl.inf.ethz.ch

@spcl_eth

Specifications (from manufacturer’s website)

86 years!?

spcl.inf.ethz.ch

@spcl_eth

Caveats

 Advertised failure rates can be misleading

 Depend on conditions, tests, definitions of failure…

 Failures are not uncorrelated

 Disks of similar age, close together in a rack, etc.

 MTTF is not useful life!

 Annual failure rate only applies during design life!

 Failure rates are not constant

 Devices fail very quickly or last a long time

spcl.inf.ethz.ch

@spcl_eth

… and reality?

(S.M.A.R.T – Self-Monitoring,

Analysis, and Reporting Technology)

spcl.inf.ethz.ch

@spcl_eth

Bathtub curve

Time

F
a

ilu
re

 r
a

te

Advertised failure rate

Infant

mortality

Disk

wears out

5 years

0.34%

per year

spcl.inf.ethz.ch

@spcl_eth

RAID 1: simple mirroring

Disk 0

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Disk 1

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Writes go to

both disks

Reads from

either disk

(may be faster)

Sector or whole

disk failure 

data can still be

recovered

spcl.inf.ethz.ch

@spcl_eth

Parity disks and striping

Disk 0

Block 0

Block 4

Block 8

Block 12

Block 16

Block 20

Block 24

Block 28

Block 32

Block 36

Block 40

Block 44

…

Disk 1

Block 1

Block 5

Block 9

Block 13

Block 17

Block 21

Block 25

Block 29

Block 33

Block 37

Block 41

Block 45

…

Disk 2

Block 2

Block 6

Block 10

Block 14

Block 18

Block 22

Block 26

Block 30

Block 34

Block 38

Block 42

Block 46

…

Disk 3

Block 3

Block 7

Block 11

Block 15

Block 19

Block 23

Block 27

Block 31

Block 35

Block 39

Block 43

Block 47

…

Disk 4

Parity(0-3)

Parity(4-7)

Parity(8-11)

Parity(12-15)

Parity(16-19)

Parity(20-23)

Parity(24-27)

Parity(28-31)

Parity(32-35)

Parity(36-39)

Parity(40-43)

Parity(44-47)

…

spcl.inf.ethz.ch

@spcl_eth

Parity disks

High

overhead for

small writes

spcl.inf.ethz.ch

@spcl_eth

RAID5: Rotating parity

Disk 0

…

Block 32

Block 33

Block 34

Block 35

Strip(0,2)

Block 16

Block 17

Block 18

Block 19

Strip(0,1)

Parity(0,0)

Parity(1,0)

Parity(2,0)

Parity(3,0)

Strip(0,0)

Disk 1

…

Block 36

Block 37

Block 38

Block 39

Strip(1,2)

Parity(0,1)

Parity(1,1)

Parity(2,1)

Parity(3,1)

Strip(1,1)

Block 0

Block 1

Block 2

Block 3

Strip(1,0)

Disk 2

…

Parity(0,2)

Parity(1,2)

Parity(2,2)

Parity(3,2)

Strip(2,2)

Block 20

Block 21

Block 22

Block 23

Strip(2,1)

Block 4

Block 5

Block 6

Block 7

Strip(2,0)

Disk 3

…

Block 40

Block 41

Block 42

Block 43

Strip(3,2)

Block 24

Block 25

Block 26

Block 27

Strip(3,1)

Block 8

Block 9

Block 10

Block 11

Strip(3,0)

Disk 4

…

Block 44

Block 45

Block 46

Block 47

Strip(4,2)

Block 28

Block 29

Block 30

Block 31

Strip(4,1)

Block 12

Block 13

Block 14

Block 15

Strip(4,0)

S
tr

ip
e
 0

S
tr

ip
e
 1

S
tr

ip
e
 2

A strip of sequential

block on each disk

 balance

parallelism with

sequential access

efficiency

Parity strip rotates

around disks with

successive stripes

Can service

widely-spaced

requests in

parallel

spcl.inf.ethz.ch

@spcl_eth

Atomic update of data and parity

What if system crashes in the middle?

1. Use non-volatile write buffer

2. Transactional update to blocks

3. Recovery scan

 And hope nothing goes wrong during the scan

4. Do nothing (seriously)

spcl.inf.ethz.ch

@spcl_eth

Recovery

 Unrecoverable read error on a sector:

 Remap bad sector

 Reconstruct contents from stripe and parity

 Whole disk failure:

 Replace disk

 Reconstruct data from the other disks

 Hope nothing else goes wrong…

spcl.inf.ethz.ch

@spcl_eth

Mean time to repair (MTTR)

RAID-5 can lose data in three ways:

1. Two full disk failures (second while the first is recovering)

2. Full disk failure and sector failure on another disk

3. Overlapping sector failures on two disks

 MTTR: Mean time to repair

 Expected time from disk failure to when new disk is fully rewritten, often

hours

 MTTDL: Mean time to data loss

 Expected time until 1, 2 or 3 happens

spcl.inf.ethz.ch

@spcl_eth

Analysis

See the book for independent failures

 Key result: most likely scenario is #2.

Solutions:

1. More redundant disks, erasure coding

2. Scrubbing

 Regularly read the whole disk to catch UREs early

3. Buy more expensive disks.

 I.e., disks with much lower error rates

4. Hot spares

 Reduce time to plug/unplug disk

spcl.inf.ethz.ch

@spcl_eth

Hardware Trends

spcl.inf.ethz.ch

@spcl_eth

The future is exciting!

Intel (2006): “Multi-core processing is taking the

industry on a fast-moving and exciting ride into

profoundly new territory. The defining paradigm

in computing performance has shifted inexorably

from raw clock speed to parallel operations and

energy efficiency.”

Dan Reed (2011): “To address these challenges

and battle dark silicon, we need new ideas in

computer architecture, system software,

programming models and end-to-end user

experiences. It’s an epic struggle for the future

of computing.”

spcl.inf.ethz.ch

@spcl_eth

More and more cores …

 Like this dual-socket Sandy Bridge system:

2.3ns

35 ns

10 ns

70 ns

94 ns

107 ns

1 us

spcl.inf.ethz.ch

@spcl_eth

What does that mean, a nanosecond is short!!

 How fast can you add two (double precision FP) numbers?

 You’re smart, so let’s say 1s 

 One core performs 8 floating point operations per cycle

 A cycle takes 0.45ns

 Then ….

 A L1 cache access (2.3ns) takes 5s

 A L2 cache access (10ns) takes 22s

 A L3 cache access (35ns) takes 78s

 A local DRAM access (70ns) takes 2.5 mins

 A remote chip access (94ns) takes 3.5 mins

 A remote DRAM access (107ns) takes 4 mins

 A remote node memory access (1us) takes 37 mins

spcl.inf.ethz.ch

@spcl_eth

Non-Uniform Memory Access (NUMA)

spcl.inf.ethz.ch

@spcl_eth

NUMA in Operating Systems

 Classify memory into NUMA nodes

 Affinity to processors and devices

 Node-local accesses are fastest

 Memory allocator and scheduler should cooperate!

 Schedule processes close to the NUMA node with their memory

 State of the art:

 Ignore it (no semantic difference)

 Striping in hardware (consecutive CLs come from different NUMA nodes)

Homogeneous performance, no support in OS needed

 Heuristics in NUMA-aware OS

 Special NUMA control in OS

 Application control

spcl.inf.ethz.ch

@spcl_eth

Heuristics in NUMA-aware OS

 “First touch” allocation policy

 Allocate memory in the node where the process is running

 Can create big problems for parallel applications (see DPHPC class)

 NUMA-aware scheduling

 Prefer CPUs in NUMA nodes where a process has memory

 Replicate “hot” OS data structures

 One copy per NUMA node

 Some do page striping in software

 Allocate pages round robin

 Unclear benefits

spcl.inf.ethz.ch

@spcl_eth

Special configurations

 Administrator/command line configurations

 Special tools (e.g., Linux)

taskset: set a process’ CPU affinity

numactl: set NUMA policies

 Application configuration

 Syscalls to control NUMA (e.g., Linux)

cpuset and friends, see “man 7 numa”

spcl.inf.ethz.ch

@spcl_eth

Non-local system times 

 One core performs 8 floating point operations per cycle

 A cycle takes 0.45ns

 Then ….

 A L1 cache access (2.3ns) takes 5s

 A L2 cache access (10ns) takes 22s

 A L3 cache access (35ns) takes 78s

 A local DRAM access (70ns) takes 2.5 mins

 A remote chip access (94ns) takes 3.5 mins

 A remote DRAM access (107ns) takes 4 mins

 A remote node memory access (1us) takes 37 mins

 Solid state disk access (100us) takes 2.6 days

 Magnetic disk access (5ms) takes 8.3 months

 Internet Zurich to Chicago (150ms) takes 10.3 years

 VMM OS reboot (4s) takes 277 years

 Physical machine reboot (30s) 2 millennia

spcl.inf.ethz.ch

@spcl_eth

How to compute fast?

March 2015

spcl.inf.ethz.ch

@spcl_eth

Why computing fast?

 Computation is the third pillar

of science

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop in 1997

$67 Million

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 18 years later (2015)

1 TF

“Amazon.com by Intel even has the

co-processor selling for just $142

(plus $12 shipping) though they

seem to be now out of stock until

early December.” (Nov. 11, 2014)

2.9TF

3 TF

Want to play with

any of these?

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 20 years later (2017)

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 25 years later (2022)

spcl.inf.ethz.ch

@spcl_eth

High-performance Computing (Supercomputing)

Vectorization

Multicore/SMP

GPU Computing

IEEE Floating Point

Datacenter Networking/RDMA

….

spcl.inf.ethz.ch

@spcl_eth

Top 500

 A benchmark, solve Ax=b

 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for

computing centers, states,

countries, nations,

continents 

 Politicized (sometimes good,

sometimes bad)

 Yet, fun to watch

iPad 2

My Laptop

My Xeon Phi

spcl.inf.ethz.ch

@spcl_eth

www.top500.org

IDC, 2009: “expects the

HPC technical server

market to grow at a

healthy 7% to 8% yearly

rate to reach revenues

of $13.4 billion by 2015.”

“The non-HPC portion of

the server market was

actually down 20.5 per

cent, to $34.6bn”

The November 2016 List

Want to run on that

system?

spcl.inf.ethz.ch

@spcl_eth

Case study: OS for High-Performance Computing

 Remember the OS design goals?

 What if performance is #1?

 Different environment

 Clusters, special architectures, datacenters

 Tens of thousands of nodes

 Hundreds of thousands of cores

 Millions of CHFs

 Unlimited fun 

spcl.inf.ethz.ch

@spcl_eth

Case Study: IBM Blue Gene

spcl.inf.ethz.ch

@spcl_eth

BlueGene/Q Compute chip
 360 mm² Cu-45 technology (SOI)

 ~ 1.47 B transistors

 16 user + 1 service processors
 plus 1 redundant processor
 all processors are symmetric
 each 4-way multi-threaded
 64 bits PowerISA™

 1.6 GHz
 L1 I/D cache = 16kB/16kB
 L1 prefetch engines
 each processor has Quad FPU

(4-wide double precision, SIMD)

 peak performance 204.8
GFLOPS@55W

 Central shared L2 cache: 32 MB
 eDRAM
multiversioned cache will support

transactional memory, speculative
execution.
 supports atomic ops

 Dual memory controller
 16 GB external DDR3 memory
 1.33 Gb/s
 2 * 16 byte-wide interface (+ECC)

 Chip-to-chip networking
Router logic integrated into BQC chip.

Ref: SC2010, IBM

spcl.inf.ethz.ch

@spcl_eth

1. Chip

16 cores

2. Module

Single Chip
4. Node Card

32 Compute Cards,

Optical Modules, Link Chips,

Torus

5a. Midplane

16 Node Cards

6. Rack

2 Midplanes

1, 2 or 4 I/O Drawers

7. System

20PF/s

3. Compute Card

One single chip module,

16 GB DDR3 Memory

5b. I/O Drawer

8 I/O Cards

8 PCIe Gen2 slots

Blue Gene/Q packaging hierarchy

Ref: SC2010, IBM

16

16
16

512

8192

16384
~2 Mio

spcl.inf.ethz.ch

@spcl_eth

Blue Gene/L System Organization

Heterogeneous nodes:

 Compute (BG/L specific)

 Run specialized OS supporting computations

efficiently

 I/O (BG/L specific)

 Use OS flexibly supporting various forms of I/O

 Service (generic)

 Uses conventional off-the-shelf OS

 Provides support for the execution of compute

and I/O node operating systems

 Front-end (generic)

 Support program compilation, submission and

debugging

 File server (generic)

 Store data that the I/O nodes read and write

Source: Jose Moreira et al. “Designing Highly-Scalable Operating System: The Blue Gene/L Story”,

http://sc06.supercomputing.org/schedule/pdf/pap178.pdf

spcl.inf.ethz.ch

@spcl_eth

 CNK controls all access to hardware, and enables bypass for

application use

 User-space libraries and applications can directly access torus

and tree through bypass

 As a policy, user-space code should not directly touch hardware,

but there is no enforcement of that policy

Software Stack in Compute Node

BG/L ASIC

CNK Bypass

Application code

User-space libraries

Source: http://www.research.ibm.com/bluegene/presentations/BGWS_05_SystemSoftware.ppt

spcl.inf.ethz.ch

@spcl_eth

 Lean Linux-like kernel (fits in 1MB of memory)
 stay out of way and let the application run

 Performs job startup sequence on every node of a
partition
 Creates address space for execution of compute process(es)

 Loads code and initialized data for the executable

 Transfers processor control to the loaded executable

 Memory management
 Address spaces are flat and fixed (no paging), and fit statically into PowerPC

440 TLBs

 No process scheduling: only one thread per processor

 Processor control stays within the application, unless:
 The application issues a system call

 Timer interrupt is received (requested by the application code)

 An abnormal event is detected, requiring kernel’s attention

Compute Node Kernel (CNK)

spcl.inf.ethz.ch

@spcl_eth

CNK System Calls

 Compute Node Kernel supports

 68 Linux system calls (file I/O, directory operations, signals, process

information, time, sockets)

 18 CNK-specific calls (cache manipulation, SRAM and DRAM

management, machine and job information, special-purpose register

access)

 System call scenarios

 Simple calls requiring little OS functionality (e.g. accessing timing register)

are handled locally

 I/O calls using file system infrastructure or IP stack are shipped for

execution in the I/O node associated with the issuing compute node

 Unsupported calls requiring infrastructure not supported in BG/L (e.g.

fork() or mmap()) return immediately with error condition

spcl.inf.ethz.ch

@spcl_eth

 CIOD processes requests from

 Control system using socket to the service node

 Debug server using a pipe to a local process

 Compute nodes using the tree network

 I/O system call sequence:

 CNK trap

 Call parameters are packaged and

sent to CIOD in the corresponding I/O

node

 CIOD unpacks the message and

reissues it to Linux kernel on I/O node

 After call completes, the results are

sent back to the requesting CNK (and

the application)

Function Shipping from CNK to CIOD

Source: IBM

spcl.inf.ethz.ch

@spcl_eth

How to communicate?

 Communication is

key in problem

solving 

 Not just

relationships!

 Also scientific

computations

Source: top500.org

spcl.inf.ethz.ch

@spcl_eth

 Remember that guy?

 EDR

 2x2x100 Gb/s  ~50 GB/s

 Memory bandwidth: ~80 GB/s

 0.8 copies 

 Solution:

 RDMA, similar to DMA

 OS too expensive, bypass

 Communication offloading

Remote Direct Memory Access

Want to learn to

program RDMA?

spcl.inf.ethz.ch

@spcl_eth

 Components:

 Links/Channel adaptors

 Switches/Routers

 Routing is supported but rarely used, most IB networks are

“LANs”

 Supports arbitrary topologies

 “Typical” topologies: fat tree, torus, islands

 Link speed (all 4x):

 Single data rate (SDR): 10 Gb/s

 Double data rate (DDR): 20 Gb/s

 Quad data rate (QDR): 40 Gb/s

 Fourteen data rate (FDR): 56 Gb/s

 Enhanced data rate (EDR): 102 Gb/s

InfiniBand Overview

Want to find better

topologies (good at

group/graph theory)?

spcl.inf.ethz.ch

@spcl_eth

Interaction with IB HCAs

 Systems calls only for setup:

 Establish connection, register memory

 Communication (send/recv, put, get, atomics) all in user-level!

 Through “verbs” interface

InfiniBand Device (HCA)

Send Recv
QP

CQ

Want to think about a better

way to interact with RDMA?

spcl.inf.ethz.ch

@spcl_eth

Open Fabrics Stack

 OFED offers a unified programming interface

 Cf. Sockets

 Originated in IB verbs

 Direct interaction with device

 Direct memory exposure

Requires page pinning (avoid OS interference)

 Device offers

 User-level driver interface

 Memory-mapped registers

spcl.inf.ethz.ch

@spcl_eth

iWARP and RoCE

 iWARP: RDMA over TCP/IP

 Ups:

Routable with existing infrastructure

Easily portable (filtering, etc.)

 Downs:

Higher latency (complex TOE)

Higher complexity in NIC

TCP/IP is not designed for datacenter networks

 RoCE: RDMA over Converged Ethernet

 Data-center Ethernet!

spcl.inf.ethz.ch

@spcl_eth

Student Cluster Competition

 6 BSc students, 1 advisor, 1 cluster, 2x13 amps

 8 teams, 4 continents @SC

 48 hours, five applications, non-stop!

 top-class conference (>13,000 attendees)

 Lots of fun

 Even more experience!

 A Swiss team 2018?

 Search for “Student

Cluster Challenge”

 HPC-CH/CSCS will

help

Want to become an

expert in HPC?

spcl.inf.ethz.ch

@spcl_eth

What to remember in 10 years!

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

 Roles:

 Referee, Illusionist, Glue

 Example: processes, threads, and scheduling

 R: Scheduling algorithms (batch, interactive, realtime)

 I: Resource abstractions (memory, CPU)

 G: Syscalls, services, driver interface

 Slicing along another dimension:

 Abstractions

 Mechanisms

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

 IPC and other communications

 A: Sockets, channels, read/write

 M: Network devices, packets, protocols

 Memory Protection

 A: Access control

 M: Paging, protection rings, MMU

 Paging/Segmentation

 A: Infinite memory, performance

 M: Caching, TLB, replacement algorithms, tables

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

 Naming

 A: (hierarchical) name spaces

 M: DNS, name lookup, directories

 File System

 A: Files, directories, links

 M: Block allocation, inodes, tables

 I/O

 A: Device services (music, pictures )

 M: Registers, PIO, interrupts, DMA

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

 Reliability:

 A: reliable hardware (storage)

 M: Checksums, transactions, raid 1/5

 And everything can be virtualized!

 CPU, MMU, memory, devices, network

 A: virtualized x86 CPU

 M: paravirtualization, rewriting, hardware extensions

 A: virtualized memory protection/management

 M: writable pages, shadow pages, hw support, IOMMU

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

 Ok, fine, it was an escalator

pitch … in Moscow

 Please remember all

for at least 10 years!

 Systems principles

 … and how to make

them fast 

spcl.inf.ethz.ch

@spcl_eth

Finito

 Thanks for being such fun to teach 

 Comments (also anonymous) are always appreciated!

 If you are interested in parallel computing research, talk to me!

 Large-scale (datacenter) systems

 Parallel computing (SMP and MPI)

 GPUs (CUDA), FPGAs, Manycore …

 … spcl-friends mailing list (subscribe on webpage)

 … on twitter: @spcl_eth 

 Hope to see you again!

Maybe in Design of Parallel

and High-Performance

Computing next semester 

 Or theses:

http://spcl.inf.ethz.ch/SeMa/

