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Last lecture -- basic exam tips

 First of all, read the instructions

 Then, read the whole exam paper through

 Look at the number of points for each question

 This shows how long we think it will take to answer!

 Find one you know you can answer, and answer it

 This will make you feel better early on.

 Watch the clock!

 If you are taking too long on a question, consider dropping it and moving 

on to another one.

 Always show your working

 You should be able to explain each summary slide

 Tip: form learning groups and present the slides to each other

 Do NOT overly focus on the quiz questions!

 Ask TAs if there are questions
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 True or false (raise hand)

 Receiver side scaling randomizes on a per-packet basis

 Virtual machines can be used to improve application performance

 Virtual machines can be used to consolidate servers

 A hypervisor implements functions similar to a normal OS

 If a CPU is strictly virtualizable, then OS code execution causes nearly no 

overheads

 x86 is not strictly virtualizable because some instructions fail when 

executed in ring 1

 x86 can be virtualized by binary rewriting

 A virtualized host operating system can write the hardware PTBR directly

 Paravirtualization does not require changes to the guest OS

 A page fault with shadow page tables is faster than nested page tables

 A page fault with writeable page tables is faster than shadow page tables

 Shadow page tables are safer than writable page tables

 Shadow page tables require paravirtualization

Our Small Quiz
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Virtualizing Devices

 Familiar by now: trap-and-emulate

 I/O space traps

 Protect memory and trap

 “Device model”: software model of device in VMM

 Interrupts → upcalls to Guest OS

 Emulate interrupt controller (APIC) in Guest

 Emulate DMA with copy into Guest PAS

 Significant performance overhead!
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Paravirtualized devices

 “Fake” device drivers which communicate efficiently with VMM 

via hypercalls

 Used for block devices like disk controllers

 Network interfaces

 “VMware tools” is mostly about these

 Dramatically better performance!
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Networking

 Virtual network device in the Guest VM

 Hypervisor implements a “soft switch”

 Entire virtual IP/Ethernet network on a machine

 Many different addressing options

 Separate IP addresses

 Separate MAC addresses

 Network Address Translation (NAT)

 Etc.
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Where are the real drivers?

1. In the Hypervisor

 E.g., VMware ESX

 Problem: need to rewrite device drivers (new OS)

2. In the console OS

 Export virtual devices to other VMs

3. In “driver domains”

 Map hardware directly into a “trusted” VM 

Device Passthrough

 Run your favorite OS just for the device driver

 Use IOMMU hardware to protect other memory from driver VM

4. Use “self-virtualizing devices”
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Xen 3.x Architecture
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Thanks to Steve Hand for some of these diagrams
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Remember this card?
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SR-IOV

 Single-Root I/O Virtualization

 Key idea: dynamically create new “PCIe devices”

 Physical Function (PF): original device, full functionality

 Virtual Function (VF): extra “device”, limited funtionality

 VFs created/destroyed via PF registers

 For networking:

 Partitions a network card’s resources

 With direct assignment can implement passthrough
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SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

PF driver

VSwitch
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Self-virtualizing devices

 Can dynamically create up to 2048 

distinct PCI devices on demand!

 Hypervisor can create a virtual NIC for each VM

 Softswitch driver programs “master” NIC to demux packets to each virtual 

NIC

 PCI bus is virtualized in each VM

 Each Guest OS appears to have a “real” NIC, talks directly to the real 

hardware
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Reliable Storage

OSPP Chapter 14
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Reliability and Availabilty

A storage system is:

 Reliable if it continues to store data and can read and write it.

 Reliability: probability it will be reliable for some period of 

time

 Available if it responds to requests

 Availability: probability it is available at any given time
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What goes wrong?

1. Operating interruption: Crash, power failure

 Approach: use transactions to ensure data is consistent

 Covered in the databases course

 See book for additional material

Media failure

 Approach: use redundancy to tolerate loss of media

 E.g. RAID storage

 Topic for today
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File system transactions

 Not widely supported

 Only one atomic operation in POSIX: 

 Rename

 Careful design of file system data structures

 Recovery using fsck

 Superseded by transactions

 Internal to the file system

 Exposed to applications
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What goes wrong?

1. Operating interruption: Crash, power failure

 Approach: use transactions to ensure data is consistent

 Covered in the databases course

 See book for additional material

2. Loss of data: Media failure

 Approach: use redundancy to tolerate loss of media

 E.g., RAID storage

 Topic for today
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Media failures 1: Sector and page failures

Disk keeps working, but a sector doesn’t

 Sector writes don’t work, reads are corrupted

 Page failure: the same for Flash memory

Approaches:

1. Error correcting codes:

 Encode data with redundancy to recover from errors

 Internally in the drive

2. Remapping: identify bad sectors and avoid them

 Internally in the disk drive

 Externally in the OS / file system
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Caveats

 Nonrecoverable error rates are significant

 And getting more so!

 Nonrecoverable error rates are not constant

 Affected by age, workload, etc.

 Failures are not independent

 Correlation in time and space

 Error rates are not uniform

 Different models of disk have different behavior over time
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Seagate Barracuda 3TB, 

7200rpm, 64MB, 3TB, SATA-3

Price today: CHF 119,95

(last year: EUR 93,50 (only amazon))

(in 2015 CHF 119,-) 

(in 2014 CHF 105,-)

(in 2013 CHF 150,-)

A well-respected disk available now from pcp.ch
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Specifications  (from manufacturer’s website)

Persistent 

errors that are 

not masked by 

coding inside 

the drive
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Unrecoverable read errors

Lots of assumptions:

Independent errors, 

etc.
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Media failures 2: Device failure

 Entire disk (or SSD) just stops working

 Note: always detected by the OS

 Explicit failure  less redundancy required

 Expressed as:

 Mean Time to Failure (MTTF)

(expected time before disk fails)

 Annual Failure Rate = 1/MTTF

(fraction of disks failing in a year)
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Specifications  (from manufacturer’s website)

86 years!?
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Caveats

 Advertised failure rates can be misleading

 Depend on conditions, tests, definitions of failure…

 Failures are not uncorrelated

 Disks of similar age, close together in a rack, etc.

 MTTF is not useful life!

 Annual failure rate only applies during design life!

 Failure rates are not constant

 Devices fail very quickly or last a long time
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… and reality?

(S.M.A.R.T – Self-Monitoring, 

Analysis, and Reporting Technology)
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RAID 1: simple mirroring

Disk 0

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Disk 1

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Writes go to 

both disks

Reads from 

either disk

(may be faster)

Sector or whole 

disk failure 

data can still be 

recovered
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Parity disks and striping 

Disk 0

Block 0

Block 4

Block 8

Block 12

Block 16

Block 20

Block 24

Block 28

Block 32

Block 36

Block 40

Block 44

…

Disk 1

Block 1

Block 5

Block 9

Block 13

Block 17

Block 21

Block 25

Block 29

Block 33

Block 37

Block 41

Block 45

…

Disk 2

Block 2

Block 6

Block 10

Block 14

Block 18

Block 22

Block 26

Block 30

Block 34

Block 38

Block 42

Block 46

…

Disk 3

Block 3

Block 7

Block 11

Block 15

Block 19

Block 23

Block 27

Block 31

Block 35

Block 39

Block 43

Block 47

…

Disk 4

Parity(0-3)

Parity(4-7)

Parity(8-11)

Parity(12-15)

Parity(16-19)

Parity(20-23)

Parity(24-27)

Parity(28-31)

Parity(32-35)

Parity(36-39)

Parity(40-43)

Parity(44-47)

…
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Parity disks

High 

overhead for 

small writes
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RAID5: Rotating parity

Disk 0

…

Block 32
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Parity(1,0)

Parity(2,0)

Parity(3,0)
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…
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Parity(3,1)
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Block 1

Block 2
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…
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Block 6
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Disk 3
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Block 25
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Strip(3,1)
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Block 11

Strip(3,0)

Disk 4

…

Block 44

Block 45

Block 46

Block 47

Strip(4,2)

Block 28

Block 29

Block 30

Block 31

Strip(4,1)

Block 12

Block 13

Block 14

Block 15

Strip(4,0)
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A strip of sequential 

block on each disk 

 balance 

parallelism with 

sequential access 

efficiency

Parity strip rotates 

around disks with 

successive stripes

Can service 

widely-spaced 

requests in 

parallel
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Atomic update of data and parity

What if system crashes in the middle?

1. Use non-volatile write buffer

2. Transactional update to blocks

3. Recovery scan

 And hope nothing goes wrong during the scan

4. Do nothing (seriously)
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Recovery

 Unrecoverable read error on a sector:

 Remap bad sector

 Reconstruct contents from stripe and parity

 Whole disk failure:

 Replace disk

 Reconstruct data from the other disks

 Hope nothing else goes wrong…
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Mean time to repair (MTTR)

RAID-5 can lose data in three ways:

1. Two full disk failures (second while the first is recovering)

2. Full disk failure and sector failure on another disk

3. Overlapping sector failures on two disks

 MTTR: Mean time to repair

 Expected time from disk failure to when new disk is fully rewritten, often 

hours

 MTTDL: Mean time to data loss

 Expected time until 1, 2 or 3 happens
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Analysis

See the book for independent failures

 Key result: most likely scenario is #2.

Solutions:

1. More redundant disks, erasure coding

2. Scrubbing

 Regularly read the whole disk to catch UREs early

3. Buy more expensive disks.

 I.e., disks with much lower error rates

4. Hot spares

 Reduce time to plug/unplug disk
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Hardware Trends
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The future is exciting!

Intel (2006): “Multi-core processing is taking the 

industry on a fast-moving and exciting ride into 

profoundly new territory. The defining paradigm 

in computing performance has shifted inexorably 

from raw clock speed to parallel operations and 

energy efficiency.”

Dan Reed (2011): “To address these challenges 

and battle dark silicon, we need new ideas in

computer architecture, system software, 

programming models and end-to-end user 

experiences. It’s an epic struggle for the future 

of computing.”
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More and more cores …

 Like this dual-socket Sandy Bridge system: 

2.3ns

35 ns

10 ns

70 ns

94 ns

107 ns

1 us
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What does that mean, a nanosecond is short!!

 How fast can you add two (double precision FP) numbers?

 You’re smart, so let’s say 1s 

 One core performs 8 floating point operations per cycle

 A cycle takes 0.45ns

 Then ….

 A L1 cache access (2.3ns) takes 5s

 A L2 cache access (10ns) takes 22s

 A L3 cache access (35ns) takes 78s

 A local DRAM access (70ns) takes 2.5 mins

 A remote chip access (94ns) takes 3.5 mins

 A remote DRAM access (107ns) takes 4 mins

 A remote node memory access (1us) takes 37 mins
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Non-Uniform Memory Access (NUMA)
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NUMA in Operating Systems

 Classify memory into NUMA nodes

 Affinity to processors and devices

 Node-local accesses are fastest

 Memory allocator and scheduler should cooperate!

 Schedule processes close to the NUMA node with their memory

 State of the art:

 Ignore it (no semantic difference)

 Striping in hardware (consecutive CLs come from different NUMA nodes)

Homogeneous performance, no support in OS needed

 Heuristics in NUMA-aware OS

 Special NUMA control in OS

 Application control



spcl.inf.ethz.ch

@spcl_eth

Heuristics in NUMA-aware OS

 “First touch” allocation policy

 Allocate memory in the node where the process is running

 Can create big problems for parallel applications (see DPHPC class)

 NUMA-aware scheduling

 Prefer CPUs in NUMA nodes where a process has memory

 Replicate “hot” OS data structures

 One copy per NUMA node

 Some do page striping in software

 Allocate pages round robin

 Unclear benefits
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Special configurations

 Administrator/command line configurations

 Special tools  (e.g., Linux)

taskset: set a process’ CPU affinity

numactl: set NUMA policies

 Application configuration

 Syscalls to control NUMA (e.g., Linux)

cpuset and friends, see “man 7 numa” 
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Non-local system times 

 One core performs 8 floating point operations per cycle

 A cycle takes 0.45ns

 Then ….

 A L1 cache access (2.3ns) takes 5s

 A L2 cache access (10ns) takes 22s

 A L3 cache access (35ns) takes 78s

 A local DRAM access (70ns) takes 2.5 mins

 A remote chip access (94ns) takes 3.5 mins

 A remote DRAM access (107ns) takes 4 mins

 A remote node memory access (1us) takes 37 mins

 Solid state disk access (100us) takes 2.6 days

 Magnetic disk access (5ms) takes 8.3 months

 Internet Zurich to Chicago (150ms) takes 10.3 years

 VMM OS reboot (4s) takes 277 years

 Physical machine reboot (30s) 2 millennia
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How to compute fast?

March 2015
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Why computing fast?

 Computation is the third pillar 

of science
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1 Teraflop in 1997

$67 Million
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1 Teraflop 18 years later (2015)

1 TF

“Amazon.com by Intel even has the 

co-processor selling for just $142 

(plus $12 shipping) though they 

seem to be now out of stock until 

early December.” (Nov. 11, 2014)

2.9TF

3 TF

Want to play with 

any of these?
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1 Teraflop 20 years later (2017)
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1 Teraflop 25 years later (2022)
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High-performance Computing (Supercomputing)

Vectorization

Multicore/SMP

GPU Computing

IEEE Floating Point

Datacenter Networking/RDMA

….
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Top 500

 A benchmark, solve Ax=b

 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for 

computing centers, states, 

countries, nations, 

continents 

 Politicized (sometimes good,

sometimes bad)

 Yet, fun to watch

iPad 2

My Laptop

My Xeon Phi
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www.top500.org

IDC, 2009: “expects the 

HPC technical server 

market to  grow at a 

healthy 7% to 8% yearly 

rate to reach revenues 

of $13.4 billion by 2015.”

“The non-HPC portion of 

the server market was 

actually down 20.5 per 

cent, to $34.6bn”

The November 2016 List

Want to run on that 

system?
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Case study: OS for High-Performance Computing

 Remember the OS design goals?

 What if performance is #1?

 Different environment

 Clusters, special architectures, datacenters

 Tens of thousands of nodes

 Hundreds of thousands of cores

 Millions of CHFs

 Unlimited fun 
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Case Study: IBM Blue Gene
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BlueGene/Q Compute chip
 360 mm²  Cu-45 technology  (SOI)

 ~ 1.47 B transistors

 16 user + 1 service processors 
 plus 1 redundant processor
 all processors are symmetric
 each 4-way  multi-threaded
 64 bits PowerISA™

 1.6 GHz
 L1 I/D cache = 16kB/16kB
 L1 prefetch engines
 each processor has Quad FPU

(4-wide double precision, SIMD)

 peak performance 204.8 
GFLOPS@55W

 Central shared L2 cache: 32 MB 
 eDRAM
multiversioned cache will support 

transactional memory, speculative 
execution.
 supports atomic ops

 Dual memory controller 
 16 GB external DDR3 memory
 1.33 Gb/s
 2 * 16 byte-wide interface (+ECC) 

 Chip-to-chip networking
Router logic integrated into BQC chip.

Ref: SC2010, IBM
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1. Chip

16 cores

2. Module

Single Chip
4. Node Card

32 Compute Cards, 

Optical Modules, Link Chips, 

Torus

5a. Midplane

16 Node Cards

6. Rack

2 Midplanes

1, 2 or 4 I/O Drawers

7. System

20PF/s

3. Compute Card

One single chip module,

16 GB DDR3 Memory

5b. I/O Drawer

8 I/O Cards

8 PCIe Gen2 slots

Blue Gene/Q packaging hierarchy

Ref: SC2010, IBM
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Blue Gene/L System Organization

Heterogeneous nodes:

 Compute (BG/L specific)

 Run specialized OS supporting computations 

efficiently

 I/O (BG/L specific)

 Use OS flexibly supporting various forms of I/O

 Service (generic)

 Uses conventional off-the-shelf OS

 Provides support for the execution of compute 

and I/O node operating systems

 Front-end (generic)

 Support program compilation, submission and 

debugging

 File server (generic)

 Store data that the I/O nodes read and write

Source: Jose Moreira et al. “Designing Highly-Scalable Operating System: The Blue Gene/L Story”,

http://sc06.supercomputing.org/schedule/pdf/pap178.pdf
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 CNK controls all access to hardware, and enables bypass for 

application use

 User-space libraries and applications can directly access torus 

and tree through bypass

 As a policy, user-space code should not directly touch hardware, 

but there is no enforcement of that policy

Software Stack in Compute Node

BG/L ASIC

CNK Bypass

Application code

User-space libraries

Source: http://www.research.ibm.com/bluegene/presentations/BGWS_05_SystemSoftware.ppt
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 Lean Linux-like kernel (fits in 1MB of memory)
 stay out of way and let the application run

 Performs job startup sequence on every node of a 
partition
 Creates address space for execution of compute process(es)

 Loads code and initialized data for the executable

 Transfers processor control to the loaded executable

 Memory management
 Address spaces are flat and fixed (no paging), and fit statically into PowerPC 

440 TLBs

 No process scheduling: only one thread per processor

 Processor control stays within the application, unless:
 The application issues a system call

 Timer interrupt is received (requested by the application code)

 An abnormal event is detected, requiring kernel’s attention

Compute Node Kernel (CNK)
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CNK System Calls

 Compute Node Kernel supports

 68 Linux system calls (file I/O, directory operations, signals, process 

information, time, sockets)

 18 CNK-specific calls (cache manipulation, SRAM and DRAM 

management, machine and job information, special-purpose register 

access)

 System call scenarios

 Simple calls requiring little OS functionality (e.g. accessing timing register) 

are handled locally

 I/O calls using file system infrastructure or IP stack are shipped for 

execution in the I/O node associated with the issuing compute node

 Unsupported calls requiring infrastructure not supported in BG/L (e.g. 

fork() or mmap()) return immediately with error condition
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 CIOD processes requests from

 Control system using socket to the service node

 Debug server using a pipe to a local process

 Compute nodes using the tree network

 I/O system call sequence:

 CNK trap

 Call parameters are packaged and 

sent to CIOD in the corresponding I/O 

node

 CIOD unpacks the message and 

reissues it to Linux kernel on I/O node

 After call completes, the results are 

sent back to the requesting CNK (and 

the application)

Function Shipping from CNK to CIOD

Source: IBM
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How to communicate?

 Communication is 

key in problem 

solving 

 Not just

relationships!

 Also scientific

computations

Source: top500.org
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 Remember that guy?

 EDR

 2x2x100 Gb/s   ~50 GB/s

 Memory bandwidth: ~80 GB/s

 0.8 copies 

 Solution:

 RDMA, similar to DMA

 OS too expensive, bypass

 Communication offloading

Remote Direct Memory Access

Want to learn to 

program RDMA?
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 Components: 

 Links/Channel adaptors

 Switches/Routers

 Routing is supported but rarely used, most IB networks are 

“LANs”

 Supports arbitrary topologies

 “Typical” topologies: fat tree, torus, islands

 Link speed (all 4x):

 Single data rate (SDR): 10 Gb/s

 Double data rate (DDR): 20 Gb/s

 Quad data rate (QDR): 40 Gb/s

 Fourteen data rate (FDR): 56 Gb/s

 Enhanced data rate (EDR): 102 Gb/s

InfiniBand Overview

Want to find better 

topologies (good at 

group/graph theory)?
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Interaction with IB HCAs

 Systems calls only for setup:

 Establish connection, register memory

 Communication (send/recv, put, get, atomics) all in user-level!

 Through “verbs” interface

InfiniBand Device (HCA)

Send Recv
QP

CQ

Want to think about a better 

way to interact with RDMA?
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Open Fabrics Stack

 OFED offers a unified programming interface

 Cf. Sockets

 Originated in IB verbs

 Direct interaction with device

 Direct memory exposure 

Requires page pinning (avoid OS interference)

 Device offers

 User-level driver interface

 Memory-mapped registers
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iWARP and RoCE

 iWARP: RDMA over TCP/IP

 Ups:

Routable with existing infrastructure

Easily portable  (filtering, etc.)

 Downs:

Higher latency (complex TOE)

Higher complexity in NIC

TCP/IP is not designed for datacenter networks

 RoCE: RDMA over Converged Ethernet

 Data-center Ethernet!
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Student Cluster Competition

 6 BSc students, 1 advisor, 1 cluster, 2x13 amps

 8 teams, 4 continents @SC

 48 hours, five applications, non-stop!

 top-class conference (>13,000 attendees)

 Lots of fun

 Even more experience!

 A Swiss team 2018?

 Search for “Student 

Cluster Challenge”

 HPC-CH/CSCS will 

help

Want to become an 

expert in HPC?
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What to remember in 10 years!
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The Lecture’s Elevator Pitch

 Roles:

 Referee, Illusionist, Glue

 Example: processes, threads, and scheduling

 R: Scheduling algorithms (batch, interactive, realtime)

 I: Resource abstractions (memory, CPU)

 G: Syscalls, services, driver interface

 Slicing along another dimension:

 Abstractions

 Mechanisms
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The Lecture’s Elevator Pitch

 IPC and other communications 

 A: Sockets, channels, read/write

 M: Network devices, packets, protocols

 Memory Protection

 A: Access control

 M: Paging, protection rings, MMU

 Paging/Segmentation

 A: Infinite memory, performance

 M: Caching, TLB, replacement algorithms, tables
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The Lecture’s Elevator Pitch

 Naming

 A: (hierarchical) name spaces

 M: DNS, name lookup, directories

 File System

 A: Files, directories, links

 M: Block allocation, inodes, tables

 I/O

 A: Device services (music, pictures )

 M: Registers, PIO, interrupts, DMA
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The Lecture’s Elevator Pitch

 Reliability:

 A: reliable hardware (storage)

 M: Checksums, transactions, raid 1/5

 And everything can be virtualized!

 CPU, MMU, memory, devices, network

 A: virtualized x86 CPU

 M: paravirtualization, rewriting, hardware extensions

 A: virtualized memory protection/management

 M: writable pages, shadow pages, hw support, IOMMU 
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The Lecture’s Elevator Pitch

 Ok, fine, it was an escalator

pitch … in Moscow

 Please remember all

for at least 10 years!

 Systems principles

 … and how to make 

them fast 
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Finito

 Thanks for being such fun to teach 

 Comments (also anonymous) are always appreciated!

 If you are interested in parallel computing research, talk to me!

 Large-scale (datacenter) systems

 Parallel computing (SMP and MPI)

 GPUs (CUDA), FPGAs, Manycore …

 … spcl-friends mailing list (subscribe on webpage)

 … on twitter: @spcl_eth 

 Hope to see you again!

Maybe in Design of Parallel 

and High-Performance 

Computing next semester 

 Or theses:

http://spcl.inf.ethz.ch/SeMa/


