
Operating	Systems	and	Networks

Network	Lecture	12:	Application	Layer

Adrian	Perrig
Network	Security	Group
ETH	Zürich

2

Where	we	are	in	the	Course
• Starting	the	Application	Layer!

– Builds	distributed	“network	services”	(DNS,	Web)	on	Transport	
services

Physical
Link

Application

Network
Transport

3

Recall
• Application	layer	protocols	are	often	part	of	an	“app”

– But	don’t	need	a	GUI,	e.g.,	DNS

TCP
IP

802.11

HTTP
app

OS

User-level

(NIC)

4

Recall	(2)
• Application	layer	messages	are	often	split	over	multiple	
packets
– Or	may	be	aggregated	in	a	packet	…

802.11 IP TCP HTTP

802.11 IP TCP HTTP

802.11 IP TCP HTTP

HTTP

Application	Communication	Needs
• Vary	widely	with	app;	must	build	on	Transport	services

5

UDP

DNS

TCP

Series	of	variable	
length,	reliable	
request/reply	
exchanges

Web

UDP

Real-time	
(unreliable)	

stream	delivery

Skype

See	Book

Short,	reliable	
request/reply	
exchanges

Message	
reliability!

OSI	Session/Presentation	Layers
• Remember	this?	Two	relevant	concepts	…

6

– Provides	functions	needed	by	users
– Converts	different	data	representations
– Multiple	sessions	between	same	src-dst
– Provides	end-to-end	delivery
– Sends	packets	over	multiple	links
– Sends	frames	of	information
– Sends	bits	as	signals

But	consider	
part	of	the	
application,	
not	strictly	
layered!

7

Session	Concept
• A	session	is	a	series	of	related	network	
interactions	in	support	of	an	application	task
– Often	informal,	not	explicit

• Examples:
– Web	page	fetches	multiple	images
– Skype	call	involves	audio,	video,	chat

8

Presentation	Concept
• Apps	need	to	identify	the	type	of	content,	and	encode	it	
for	transfer	
– These	are	Presentation	functions

• Examples:
– Media	(MIME)	types,	e.g.,	image/jpeg,	identify	the	type	of	
content

– Transfer	encodings,	e.g.,	gzip,	identify	content	encoding
– Application	headers	are	often	simple	and	readable	versus	
packed	for	efficiency

9

Topics
• Evolving	Internet	applications
• DNS	(Domain	Name	System)
• HTTP	(HyperText Transfer	Protocol)
• Web	proxies	and	caching
• Content	Distribution	Networks
• Peer-to-peer	(BitTorrent)

• Real-time	applications	(VoIP)

This
lecture

See	Book

Evolution	of	Internet	Applications
• Always	changing,	and	growing	…

10

20101970 19901980 2000

Traffic

File	Transfer	(FTP)
Email	(SMTP)

News	(NTTP)

Secure	Shell	(ssh)Telnet

Email

Web	(HTTP)
Web	(CDNs)

P2P	(BitTorrent)
Web	(Video)

???

Evolution	of	Internet	Applications	(2)
• For	a	peek	at	the	state	of	the	Internet:

– Akamai’s	State	of	the	Internet	Report	(quarterly)
– Cisco’s	Visual	Networking	Index
– Mary	Meeker’s Internet	Report

• Robust	Internet	growth,	esp.	video,	wireless	and	mobile
– Most	traffic	is	video,	will	be	90%	of	Internet	in	a	few	years
– Wireless	traffic	will	soon	overtake	wired	traffic
– Mobile	traffic	is	still	a	small	portion	(15%)	of	overall
– Growing	attack	traffic	from	China,	also	U.S.	and	Russia

11

Evolution	of	the	Web

12

Source:	http://www.evolutionoftheweb.com,	Vizzuality,	Google,	and	Hyperakt

Evolution	of	the	Web	(2)

13

Source:	http://www.evolutionoftheweb.com,	Vizzuality,	Google,	and	Hyperakt

14

Domain	Name	System	(DNS)	(§7.1.1-7.1.3)

• The	DNS	(Domain	Name	System)
– Human-readable	host	names,	and	more
– Part	1:	the	distributed	namespace

www.uw.edu?

Network

128.94.155.135

Names	and	Addresses
• Names:	higher-level	(user-understandable)	resource	identifiers	
• Addresses: lower-level	resource	locators

– Multiple	levels,	e.g.,	full	name	à email	à IP	address	à Ethernet	address
• Resolution (or	lookup):	mapping	a	name	to	an	address

15

Directory

Name,	e.g.
“Andy	Tanenbaum,”
or	“flits.cs.vu.nl”	

Address,	e.g.
“Vrije Universiteit,	Amsterdam”

or	IPv4	“130.30.27.38”
Lookup

16

Before	the	DNS	– HOSTS.TXT
• Directory	was	a	file	HOSTS.TXT	regularly	retrieved	
for	all	hosts	from	a	central	machine	at	the	NIC	
(Network	Information	Center)

• Names	were	initially	flat,	became	hierarchical	(e.g.,	
lcs.mit.edu)	~1985	

• Neither	manageable	nor	efficient	as	the	ARPANET	
grew	…

17

DNS
• A	naming	service	to	map	between	host	names	and	their	IP	

addresses	(and	more)
– www.uwa.edu.au	à 130.95.128.140

• Goals
– Easy	to	manage	(especially	with	multiple	parties)
– Efficient	(good	performance,	few	resources)

• Approach
– Distributed	directory	based	on	a	hierarchical	namespace
– Automated	protocol	to	tie	pieces	together

DNS	Namespace
• Hierarchical,	starting	from	“.”	(dot,	typically	omitted)

18

robot.cs.washington.edu

TLDs	(Top-Level	Domains)
• Run	by	ICANN	(Internet	Corp.	for	Assigned	Names	and	Numbers)

– Starting	in	‘98;	naming	is	financial,	political,	and	international

• 22+	generic	TLDs
– Initially	.com,	.edu ,	.gov.,	.mil,	.org,	.net
– Added	.aero,	.info,	.museum,	etc.	from	’01	through	.xxx	in	’11
– Different	TLDs	have	different	usage	policies

• ~250	country	code	TLDs
– Two	letters,	e.g.,	“.au”,	plus	international	characters	since	2010
– Widely	commercialized,	e.g.,	.tv (Tuvalu)
– Many	domain	hacks,	e.g.,	instagr.am	(Armenia),	goo.gl	(Greenland)

19

DNS	Zones
• A	zone is	a	contiguous	portion	of	the	namespace

20

A	zoneDelegation

21

DNS	Zones	(2)
• Zones	are	the	basis	for	distribution

– EDU	Registrar	administers	.edu
– UW	administers	washington.edu
– CS&E	administers	cs.washington.edu

• Each	zone	has	a	nameserver to	contact	for	
information	about	it
– Zone	must	include	contacts	for	delegations,	e.g.,	.edu
knows	nameserver for	washington.edu

DNS	Resource	Records
• A	zone	is	comprised	of	DNS	resource	records	that	
provide	information	about	its	domain	names

22

Type Meaning
SOA Start of authority, has main zone parameters
A IPv4 address of a host
AAAA (“quad A”) IPv6 address of a host
CNAME Canonical name for an alias
MX Mail exchanger for the domain
NS Nameserver of domain or delegated subdomain

23

DNS	Resource	Records	(2)

IP	addresses	
of	computers

Name	server

Mail	gateways

24

DNS	Resolution
• DNS	protocol	lets	a	host	resolve	any	host	name	
(domain)	to	IP	address

• If	unknown,	can	start	with	the	root	nameserver and	
work	down	zones

• Let’s	see	an	example	first	…

DNS	Resolution	(2)
• flits.cs.vu.nl	resolves	robot.cs.washington.edu

25

26

Iterative	vs.	Recursive	Queries
• Recursive	query

– Nameserver completes	resolution	and	returns	the	final	answer
– E.g.,	flits	à local	nameserver

• Iterative	query
– Nameserver returns	the	answer	or	who	to	contact	next	for	the	
answer

– E.g.,	local	nameserverà all	others

27

Iterative	vs.	Recursive	Queries	(2)
• Recursive	query

– Lets	server	offload	client	burden	(simple	resolver)	for	
manageability

– Lets	server	cache	over	a	pool	of	clients	for	better	performance

• Iterative	query
– Lets	server	“file	and	forget”
– Easy	to	build	high	load	servers

28

Caching
• Resolution	latency	should	be	low

– Adds	delay	to	web	browsing
• Cache	query/responses	to	answer	future	queries	
immediately
– Including	partial	(iterative)	answers
– Responses	carry	a	TTL	for	caching

Nameserver

query out

response
Cache

Caching	(2)
• flits.cs.vu.nl	now	resolves	eng.washington.edu

– And	previous	resolutions	cut	out	most	of	the	process

29

1:	query 2:	query

UW	nameserver
(for	washington.edu)

3:	eng.washington.edu4:	eng.washington.edu

Local	nameserver
(for	cs.vu.nl)

I	know	the	server	for	
washington.edu!

Cache

30

Local	Nameservers
• Local	nameservers typically	run	by	IT	(enterprise,	ISP)

– But	may	be	your	host	or	AP
– Or	alternatives	e.g.,	Google	public	DNS

• Clients	need	to	be	able	to	contact	their	local	
nameservers
– Typically	configured	via	DHCP

31

Root	Nameservers
• Root	(dot)	is	served	by	13	server	names

– a.root-servers.net	to	m.root-servers.net
– All	nameservers need	root	IP	addresses
– Handled	via	configuration	file	(named.ca)

• There	are	>250	distributed	server	instances
– Highly	reachable,	reliable	service
– Most	servers	are	reached	by	IP	anycast (Multiple	locations	advertise	

same	IP!	Routes	take	client	to	the	closest	one.	See	§5.2.9)
– Servers	are	IPv4	and	IPv6	reachable

Root	Server	Deployment

32

Source:	http://www.root-servers.org.	Snapshot	on	27.02.12.	Does	not	represent	current	deployment.

33

DNS	Protocol
• Query	and	response	messages

– Built	on	UDP	messages,	port	53
– ARQ	for	reliability;	server	is	stateless!
– Messages	linked	by	a	16-bit	ID	field

Query

Response

Time

Client Server
ID=0x1234

ID=0x1234

34

DNS	Protocol	(2)
• Service	reliability	via	replicas

– Run	multiple	nameservers for	domain
– Return	the	list;	clients	use	one	answer
– Helps	distribute	load	too

NS	for	uw.edu?

A

B

C

Use	A,	B	or	C

35

DNS	Protocol	(3)
• Security	is	a	major	issue

– Compromise	redirects	to	wrong	site!
– Not	part	of	initial	protocols	..

• DNSSEC	(DNS	Security	Extensions)
– Long	under	development,	now	partially	deployed

Um,	security??

36

HTTP,	the	HyperText Transfer	Protocol
(§7.3.1-7.3.4)

• HTTP,	(HyperText Transfer	Protocol)
– Basis	for	fetching	Web	pages

request
Network

37

Sir	Tim	Berners-Lee	(1955–)	
• Inventor	of	the	Web

– Dominant	Internet	app	since	mid	90s
– He	now	directs	the	W3C

• Developed	Web	at	CERN	in	‘89
– Browser,	server	and	first	HTTP
– Popularized	via	Mosaic	(‘93),	Netscape
– First	WWW	conference	in	’94	…

Source:	By	Paul	Clarke,	CC-BY-2.0,	via	Wikimedia	Commons

Web	Context	

38

HTTP	request

HTTP	response

Page	as	a	set	of	related	
HTTP	transactions

39

Web	Protocol	Context
• HTTP	is	a	request/response	protocol	for	fetching	Web	
resources
– Runs	on	TCP,	typically	port	80
– Part	of	browser/server	app

TCP
IP

802.11

browser

HTTP
TCP
IP

802.11

server

HTTP
request

response

40

Fetching	a	Web	page	with	HTTP
• Start	with	the	page	URL:

http://de.wikipedia.org/wiki/Chuchichäschtli

• Steps:
– Resolve	the	server	to	IP	address	(DNS)
– Set	up	TCP	connection	to	the	server
– Send	HTTP	request	for	the	page
– (Await	HTTP	response	for	the	page)
– Execute	/	fetch	embedded	resources	/	render
– Clean	up	any	idle	TCP	connections

Protocol Page	on	serverServer

**

Static	vs Dynamic	Web	pages
• Static	web	page	is	content	of	a	file,	e.g.,	image
• Dynamic	web	page	is	the	result	of	program	execution

– Javascript on	client,	PHP	on	server,	or	both	

41

Evolution	of	HTTP
• Consider	security	(SSL/TLS	for	HTTPS)	later

42

20101990 20001995 2005

1.0	developed

1.1	developed
(persistent	connections)

0.9
RFC	1945

RFC	2068,	2109
RFC	2616

Cookies
SSL	2.0

SPDY
(HTTP	2.0)

Proliferation	of	
content	types	

and	
browser/server	

scripting	
technologies

RFC	2965

43

HTTP	Protocol
• Originally	a	simple	protocol,	with	many	options	added	over	

time
– Text-based	commands,	headers

• Try	it	yourself:
– As	a	“browser”	fetching	a	URL
– Run	“telnet	www.scion-architecture.net 80”
– Type	“GET	/	HTTP/1.1”	followed	by	“Host:	www.scion-

architecture.net”	followed	by	a	blank	line
– Server	will	return	HTTP	response	with	the	page	contents	(or	other	

info)

44

HTTP	Get	Result
$	telnet	www.scion-architecture.net 80
Trying	129.132.85.42...
Connected	to	scion-architecture.net.
Escape	character	is	'^]'.
GET	/	HTTP/1.1
Host:	www.scion-architecture.net

HTTP/1.1	200	OK
Date:	Wed,	01	Jun	2016	21:04:24	GMT
Server:	Apache/2.2.15	(Red	Hat)
X-Powered-By:	PHP/5.3.3
Transfer-Encoding:	chunked
Content-Type:	text/html;	charset=UTF-8

3565

<!DOCTYPE	HTML>

<html>
...

45

HTTP	Protocol	(2)
• Commands	used	in	the	request

Method Description
GET Read	a	Web	page
HEAD Read	a	Web	page's	header
POST Append	to	a	Web	page
PUT Store	a	Web	page
DELETE Remove	the	Web	page
TRACE Echo	the	incoming	request
CONNECT Connect	through	a	proxy
OPTIONS Query	options	for	a	page

Fetch
page
Upload
data

HTTP	Protocol	(3)
• Codes	returned	with	the	response

46

Code Meaning Examples
1xx Information 100	=	server	agrees	to	handle	client's	request
2xx Success 200	=	request	succeeded;	204	=	no	content	present
3xx Redirection 301	=	page	moved;	304	=	cached	page	still	valid
4xx Client	error 403	=	forbidden	page;	404	=	page	not	found
5xx Server	error 500	=	internal	server	error;	503	=	try	again	later

Yes!

HTTP	Protocol	(4)
• Many	header	fields	specify	capabilities	and	content

– E.g.,	Content-Type:	text/html,	Cookie:	lect=12-1-http

47

Function Example	Headers
Browser	capabilities
(clientà server)

User-Agent, Accept,	Accept-Charset,	Accept-Encoding,	
Accept-Language

Caching	related
(mixed	directions)

If-Modified-Since, If-None-Match,	Date,	Last-Modified,	
Expires,	Cache-Control,	ETag

Browser	context
(client	à server) Cookie,	Referer,	Authorization,	Host

Content	delivery
(server	à client)

Content-Encoding, Content-Length,	Content-Type,	
Content-Language,	Content-Range,	Set-Cookie

48

HTTP	Performance	 (§7.3.4)
• Performance	of	HTTP

– Parallel	and	persistent	connections

request
Network

49

PLT	(Page	Load	Time)
• PLT	is	the	key	measure	of	web	performance	

– From	click	until	user	sees	page
– Small	increases	in	PLT	decrease	sales

• PLT	depends	on	many	factors
– Structure	of	page/content
– HTTP	(and	TCP!)	protocol
– Network	RTT	and	bandwidth

50

Early	Performance	(1)
• HTTP/1.0	uses	one	TCP	
connection	to	fetch	each	web	
resource
– Made	HTTP	very	easy	to	build
– But	gave	fairly	poor	PLT…

51

Early	Performance	(2)
• Many	reasons	why	PLT	is	larger	than	

necessary
– Sequential	request/responses,	even	when	

to	different	servers
– Multiple	TCP	connection	setups	to	the	same	

server
– Multiple	TCP	slow-start	phases

• Network	is	not	used	effectively
– Worse	with	many	small	resources	/	page

52

Ways	to	Decrease	PLT
1. Reduce	content	size	for	transfer

– Smaller	images,	gzip
2. Change	HTTP	to	make	better	use	of	available	

bandwidth	(e.g.,	avoid	TCP	slow	start)
3. Change	HTTP	to	avoid	repeated	transfers	of	the	

same	content
– Caching,	and	proxies

4. Move	content	closer	to	client
– CDNs	[later]

53

Parallel	Connections
• One	simple	way	to	reduce	PLT

– Browser	runs	multiple	(8,	say)	HTTP	instances	in	parallel
– Server	is	unchanged;	already	handles	concurrent	requests	for	many	clients

• How	does	this	help?
– Single	HTTP	wasn’t	using	network	much	…
– So	parallel	connections	aren’t	slowed	much
– Pulls	in	completion	time	of	last	fetch

54

Persistent	Connections
• Parallel	connections	compete	with	each	other	for	
network	resources
– 1	parallel	client	≈	8	sequential	clients?
– Exacerbates	network	bursts,	and	loss

• Persistent	connection	alternative
– Make	1	TCP	connection	to	1	server
– Use	it	for	multiple	HTTP	requests

Persistent	Connections	(2)

55

One	request	per	connection

Sequential	requests	
per	connection

Pipelined	requests	
per	connection

56

Persistent	Connections	(3)
• Widely	used	as	part	of	HTTP/1.1

– Supports	optional	pipelining
– PLT	benefits	depending	on	page	structure,	but	easy	on	
network

• Issues	with	persistent	connections
– How	long	to	keep	TCP	connection?
– Can	it	be	slower?	(Yes.	But	why?)

57

HTTP	Caching	and	Proxies (§7.3.4,	§7.5.2)

• HTTP	caching	and	proxies
– Enabling	content	reuse

Server
Clients

Proxy
Cache

58

Web	Caching
• Users	often	revisit	web	pages

– Big	win	from	reusing	local	copy!
– This	is	caching

• Key	question:
– When	is	it	OK	to	reuse	local	copy?

NetworkCache

Local	copies

Server

59

Web	Caching	(2)
• Locally	determine	if	copy	is	still	valid

– Based	on	expiry	information	such	as “Expires”	header	from	
server

– Or	use	a	heuristic	to	guess	(cacheable,	freshly	valid,	not	
modified	recently)	

– Content	is	then	available	right	away

NetworkCache
Server

60

Web	Caching	(3)
• Revalidate	copy	with	remote	server

– Based	on	timestamp	of	copy	such	as	“Last-Modified”	header	
from	server

– Or	based	on	content	such	as	“ETag”	header	from	server:	Entity	
Tag,	computed	by	server	as	a	unique	object	identifier

– Content	is	available	after	1	RTT

NetworkCache
Server

Web	Caching	(4)
• Putting	the	pieces	together:

61

62

Web	Proxies
• Place	intermediary	between	pool	of	clients	and	
external	web	servers

• Proxy	caching
– Clients	benefit	from	larger,	shared	cache	(other	clients	
may	have	already	accessed	content)

– Benefits	limited	by	secure	/	dynamic	per-client	content,	
as	well	as	“long	tail”	data	access	pattern

– Enables	application	of	organizational	access	policies

Web	Proxies	(2)
• Clients	contact	proxy;	proxy	contacts	server

63

Cache

Near	client
Far	from	client

64

CDNs (Content	Delivery	Networks)	(§7.5.3)

• CDNs	(Content	Delivery	Networks)
– Efficient	distribution	of	popular	content;	faster	delivery	for	
clients

Content
Replica

Consumers

65

Context
• As	the	web	took	off	in	the	90s,	traffic	volumes	grew	and	
grew.	This:
1. Concentrated	load	on	popular	servers
2. Led	to	congested	networks	and	need	to	provision	more	

bandwidth
3. Gave	a	poor	user	experience

• Idea:
– Place	popular	content	near	clients
– Helps	with	all	three	issues	above

66

Before	CDNs
• Sending	content	from	the	source	to	4	users	takes	4	x	3	=	
12	“network	hops”	in	the	example

Source

User

User

.	.	.

67

After	CDNs
• Sending	content	via	replicas	takes	only	4	+	2	=	6	
“network	hops”

Source

User

User

.	.	.
Replica

68

After	CDNs	(2)
• Benefits	assuming	popular	content:

– Reduces	server,	network	load
– Improves	user	experience	(PLT)

Source

User

User

.	.	.
Replica

69

Popularity	of	Content
• Zipf’s Law:	few	popular	items,	many	
unpopular	ones	(“heavy	tail”	of	
probability	distribution);	both	matter

Zipf popularity
(kth item	is	1/k)

Rank
Source:	Wikipedia

George	Zipf (1902-1950)

70

How	to	place	content	near	clients?	
• Use	browser	and	proxy	caches

– Helps,	but	limited	to	one	client	or	clients	in	one	organization

• Want	to	place	replicas	across	the	Internet	for	use	by	all	
nearby	clients
– Done	by	clever	use	of	DNS

Content	Delivery	Network

71

Content	Delivery	Network	(2)
• DNS	resolution	of	site	gives	answer	depending	on	client

– Direct	each	client	to	the	nearest	replica	(using	IP	geolocation)

72

Consumer

site

73

Business	Model
• Clever	model	pioneered	by	Akamai

– Placing	site	replica	at	an	ISP	is	win-win
– Improves	site	experience	and	reduces	bandwidth	usage	of	ISP

ISP
User

User

.	.	.
Replica

74

The	Future	of	HTTP
• The	Future	of	HTTP

– How	will	we	make	the	web	faster?
– A	brief	look	at	some	approaches

request
Network

Modern	Web	Pages
• Waterfall	diagram	shows	progression	of	page	load

75

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	

76

Modern	Web	Pages	(2)

Yikes!
-23	requests
-1	Mb	data
-2.6	secs

webpagetest tool	for	http://coursera.org	(Firefox,	5/1	Mbps,	from	VA,	3/1/13)	

• Waterfall	and	PLT	depends	on	many	factors
– Very	different	for	different	browsers
– Very	different	for	repeat	page	views
– Depends	on	local	computation	as	well	as	network

Modern	Web	Pages	(3)

77

Yay!	(Network	used	well)

78

Recent	work	to	reduce	PLT
Pages	grow	ever	more	complex!

– Larger,	more	dynamic,	and	secure
– How	will	we	reduce	PLT?

1. Better	use	of	the	network
– HTTP/2	effort	based	on	SPDY

2. Better	content	structures
– mod_pagespeed server	extension

79

SPDY	(“speedy”)
• A	set	of	HTTP	improvements

– Multiplexed	(parallel)	HTTP	requests	on	one	TCP	connection
– Client	priorities	for	parallel	requests
– Compressed	HTTP	headers
– Server	push	of	resources

• Now	being	tested	and	improved
– Default	in	Chrome,	Firefox
– Basis	for	HTTP/2

80

mod_pagespeed
• Observation:

– The	way	pages	are	written	affects	how	quickly	they	load
– Many	books	on	best	practices	for	page	authors	and	developers

• Key	idea:
– Have	server	re-write	(compile)	pages	to	help	them	load	
quickly!

– Apache	mod_pagespeed is	an	example

81

mod_pagespeed (2)
• Apache	server	extension

– Software	installed	with	web	server
– Rewrites	pages	“on	the	fly”	with	rules	based	on	best	practices

• Example	rewrite	rules:
– Minify	Javascript
– Flatten	multi-level	CSS	files
– Resize	images	for	client
– …	and	much	more	(100s	of	specific	rules)

82

Peer-to-Peer	Content	Delivery	(BitTorrent)
(§7.5.4)

• Peer-to-peer	content	delivery
– Runs	without	dedicated	infrastructure
– BitTorrent as	an	example

Peer

Peer

Peer

PeerPeer

83

Context
• Delivery	with	client/server	CDNs:

– Efficient,	scales	up	for	popular	content
– Reliable,	managed	for	good	service

• …	but	some	disadvantages	too:
– Need	for	dedicated	infrastructure
– Centralized	control/oversight

84

P2P	(Peer-to-Peer)
• Goal	is	delivery	without dedicated	infrastructure	or	
centralized	control
– Still	efficient	at	scale,	and	reliable

• Key	idea	is	to	have	participants	(or	peers)	help	each	
other
– Initially	Napster	‘99	for	music	(gone)
– Now	BitTorrent ‘01	onwards	(popular!)

85

P2P	Challenges
• No	servers	on	which	to	rely	on

– Communication	must	be	peer-to-peer and	self-organizing,	not	
client-server

– Leads	to	several	issues	at	scale		…	

Peer

Peer

Peer

PeerPeer

86

P2P	Challenges	(2)
1. Limited	capabilities

– How	can	one	peer	deliver	content	to	all	other	peers?

2. Participation	incentives
– Why	would	peers	help	each	other?

3. Decentralization
– How	will	peers	find	content?

87

Overcoming	Limited	Capabilities
• Peer	can	send	content	to	all	other	peers	using	a	
distribution	tree
– Typically	done	with	replicas	over	time
– Self-scaling	capacity	(more	nodes	àmore	capacity)

Source

88

Providing	Participation	Incentives
• Peers	play	two	roles:

– Download	()	to	help	themselves,	and	upload	()	to	help	
others

Source

89

Providing	Participation	Incentives	(2)
• Couple	the	two	roles:

– I’ll	upload	for	you	if	you	upload	for	me
– Encourages	cooperation

Source

90

Enabling	Decentralization
• Peer	must	learn	where	to	get	content

– Use	DHTs (Distributed	Hash	Tables)

• DHTs	are	fully-decentralized,	efficient	algorithms	for	a	
distributed	index
– Index	is	spread	across	all	peers
– Index	lists	peers	to	contact	for	content
– Any	peer	can	lookup	the	index	
– Started	as	academic	work	in	2001

91

BitTorrent
• Main	P2P	system	in	use	today

– Developed	by	Cohen	in	‘01	
– Very	rapid	growth,	large	transfers
– Big	fraction	of	Internet	traffic	
– Used	for	legal	and	copyrighted	content

• Delivers	data	using	“torrents”:
– Transfers	files	in	pieces	for	parallelism
– Notable	for	treatment	of	incentives
– Tracker	or	decentralized	index	(DHT)

By	Jacob	Appelbaum,	CC-BY-SA-2.0,	from	Wikimedia	Commons

Bram	Cohen	(1975—)		

92

BitTorrent Protocol
• Steps	to	download	a	torrent:

1. Start	with	torrent	description
2. Contact	tracker	to	join	and	get	list	of	peers	(with	at	least	

seed	peer)
2. Or,	use	DHT	index	for	peers
3. Trade	pieces	with	different	peers
4. Favor	peers	that	upload	to	you	rapidly;	“choke”	peers	

that	don’t	by	slowing	your	upload	to	them

BitTorrent Protocol	(2)
• All	peers	(except	seed)	retrieve	torrent	at	the	same	time

93

BitTorrent Protocol	(3)
• Dividing	file	into	pieces	gives	parallelism	for	speed

94

BitTorrent Protocol	(4)
• Choking	unhelpful	peers	encourages	participation

95

STOP
STOP

STOP

XXX

BitTorrent Protocol	(5)
• DHT	index	(spread	over	peers)	is	fully	decentralized

96

DHT

DHT

DHT
DHT

DHT

DHT

DHT

DHT

97

P2P	Outlook
• Alternative	to	CDN-style	client-server	content	
distribution
– With	potential	advantages

• P2P	and	DHT	technologies	finding	more	widespread	use	
over	time
– E.g.,	part	of	skype,	Amazon	cloud	computing
– Expect	hybrid	systems	in	the	future

