
09/04/17	

1	

Opera-ng	Systems	and	Networks	
	
Network	Lecture	3:	Link	Layer	(1)	

Adrian	Perrig	
Network	Security	Group	
ETH	Zürich	

2	

Where	we	are	in	the	Course	
•  Moving	on	to	the	Link	Layer!	

Physical	
Link	

Network	
Transport	
Applica-on	

3	

Scope	of	the	Link	Layer	
•  Concerns	how	to	transfer	messages	over	one	or	more	
connected	links	
– Messages	are	frames,	of	limited	size	
–  Builds	on	the	physical	layer	

Frame	

In	terms	of	layers	…	

4	

Actual	data	path	

Virtual	data	path	

Network	

Link	

Physical	

In	terms	of	layers	(2)	

5	

Actual	data	path	

Virtual	data	path	

Network	

Link	

Physical	

Typical	Implementa-on	of	Layers	

6	

09/04/17	

2	

7	

Topics	
1.  Framing	

–  Delimi-ng	start/end	of	frames	
2.  Error	detec-on	and	correc-on	

–  Handling	errors	

3.  Retransmissions	
–  Handling	loss	

4.  Mul-ple	Access	
–  802.11,	classic	Ethernet	

5.  Switching	
–  Modern	Ethernet	

Later	

8	

Framing	(§3.1.2)	
•  The	Physical	layer	gives	us	a	stream	of	bits.	How	do	we	
interpret	it	as	a	sequence	of	frames?	

…10110	…	

Um?	

9	

Framing	Methods	
•  We’ll	look	at:	
–  Byte	count	(mo-va-on)	
–  Byte	stuffing	
–  Bit	stuffing	

•  In	prac-ce,	the	physical	layer	ogen	helps	to	iden-fy	
frame	boundaries	
–  E.g.,	Ethernet,	802.11	

10	

Byte	Count	
•  First	try:	
– Let’s	start	each	frame	with	a	length	field!	
–  It’s	simple,	and	hopefully	good	enough	…	

Byte	Count	(2)	

	
	
•  How	well	do	you	think	it	works?	

11	

Byte	Count	(3)	
•  Difficult	to	re-synchronize	ager	framing	error	
– Want	a	way	to	scan	for	a	start	of	frame	

12	

09/04/17	

3	

13	

Byte	Stuffing	
•  Bejer	idea:	

–  Have	a	special	flag	byte	value	that	means	start/end	of	frame	
–  Replace	(“stuff”)	the	flag	inside	the	frame	with	an	escape	code	
–  Complica-on:	have	to	escape	the	escape	code	too!	

Byte	Stuffing	(2)	
•  Rules:	

–  Replace	each	FLAG	in	data	with	ESC	FLAG	
–  Replace	each	ESC	in	data	with	ESC	ESC	

14	

Byte	Stuffing	(3)	
•  Now	any	unescaped	FLAG	is	the	start/end	of	a	frame	

15	 16	

Bit	Stuffing	
•  Can	stuff	at	the	bit	level	too	
– Call	a	flag	six	consecu-ve	1s	
– On	transmit,	ager	five	1s	in	the	data,	insert	a	0	
– On	receive,	a	0	ager	five	1s	is	deleted		

Bit	Stuffing	(2)	
•  Example:	

17	

Transmijed	bits	
with	stuffing	

Data	bits	

Bit	Stuffing	(3)	
•  So	how	does	it	compare	with	byte	stuffing?	

18	

Transmijed	bits	
with	stuffing	

Data	bits	

09/04/17	

4	

19	

Link	Example:	PPP	over	SONET	
•  PPP	is	Point-to-Point	Protocol	
•  Widely	used	for	link	framing	
– E.g.,	it	is	used	to	frame	IP	packets	that	are	sent	over	
SONET	op-cal	links	

	

Link	Example:	PPP	over	SONET	(2)	
•  Think	of	SONET	as	a	bit	stream,	and	PPP	as	the	
framing	that	carries	an	IP	packet	over	the	link	

20	

Protocol	stacks	
PPP	frames	may	be	split	over	

SONET	payloads	

Link	Example:	PPP	over	SONET	(3)	
•  Framing	uses	byte	stuffing		

–  FLAG	is	0x7E	and	ESC	is	0x7D	

21	

Link	Example:	PPP	over	SONET	(4)	
•  Byte	stuffing	method:	
– To	stuff	(unstuff)	a	byte,	add	(remove)	ESC	(0x7D),					
and	XOR	byte	with	0x20	

– Removes	FLAG	from	the	contents	of	the	frame	

22	

23	

Error	Coding	Overview	(§3.2)	
•  Some	bits	will	be	received	in	error	due	to	noise.	What	can	

we	do?	
–  Detect	errors	with	codes	
–  Correct	errors	with	codes	
–  Retransmit	lost	frames	

•  Reliability	is	a	concern	that	cuts	across	the	layers	–	we’ll	
see	it	again	

Later	

Problem	–	Noise	may	flip	received	bits		

24	

Signal	
0	 0	 0	 0	

1	1	 1	
0	

0	 0	 0	 0	
1	1	 1	

0	

0	 0	 0	 0	
1	1	 1	

0	

Slightly	
Noisy	

Very	
noisy	

09/04/17	

5	

25	

Approach	–	Add	Redundancy		
•  Error	detec-on	codes	

–  	Add	check	bits	to	the	message	bits	to	let	some	errors	be	
detected	

•  Error	correc-on	codes	
–  Add	more	check	bits	to	let	some	errors	be	corrected	

•  Key	issue	is	now	to	structure	the	code	to	detect	many	
errors	with	few	check	bits	and	modest	computa-on	

26	

Mo-va-ng	Example	
•  A	simple	code	to	handle	errors:	

–  Send	two	copies!	Error	if	different.	
	

•  How	good	is	this	code?	
–  How	many	errors	can	it	detect/correct?	
–  How	many	errors	will	make	it	fail?	
				

27	

Mo-va-ng	Example	(2)	
•  We	want	to	handle	more	errors	with	less	overhead	

– Will	look	at	bejer	codes;	they	are	applied	mathema-cs	
–  But,	they	can’t	handle	all	errors	
–  And	they	focus	on	accidental	errors	

28	

Using	Error	Codes	
•  Codeword	consists	of	D	data	plus	R	check	bits	
(=systema-c	block	code)	

•  Sender:		
–  Compute	R	check	bits	based	on	the	D	data	bits;	send	the	
codeword	of	D+R	bits	

D	 R=fn(D)	
Data	bits	 Check	bits	

29	

Using	Error	Codes	(2)	
•  Receiver:			

–  Receive	D+R	bits	with	unknown	errors	
–  Recompute	R	check	bits	based	on	the	D	data	bits;	error	if	R	
doesn’t	match	R’	

D	 R’	
Data	bits	 Check	bits	

R=fn(D)	
=?	

30	

Intui-on	for	Error	Codes	
•  For	D	data	bits,	R	check	bits:	

	
	
	

•  Randomly	chosen	codeword	is	unlikely	to	be	correct;	
overhead	is	low	

All	
codewords	
Correct	

codewords	

09/04/17	

6	

31	

R.W.	Hamming	(1915-1998)	
•  Much	early	work	on	codes:	

–  “Error	Detec-ng	and	Error	
Correc-ng	Codes”,	BSTJ,	1950	

•  See	also:	
–  “You	and	Your	Research”,	1986	

Source:	IEEE	GHN,	©	2009	IEEE	

32	

Hamming	Distance	
•  Distance	is	the	number	of	bit	flips	needed	to	change		
D+R1	to	D+R2	

•  Hamming	distance	of	a	code	is	the	minimum	distance	
between	any	pair	of	codewords	

33	

Hamming	Distance	(2)	
•  Error	detec-on:	

–  For	a	code	of	Hamming	distance	d+1,	up	to	d	errors	will	
always	be	detected	

34	

Hamming	Distance	(3)	
•  Error	correc-on:	

–  For	a	code	of	Hamming	distance	2d+1,	up	to	d	errors	can	
always	be	corrected	by	mapping	to	the	closest	codeword	

35	

Error	Detec-on	(§3.2.2)	
•  Some	bits	may	be	received	in	error	due	to	noise.	How	
do	we	detect	this?	
–  Parity	
–  Checksums	
–  CRCs	

•  Detec-on	will	let	us	fix	the	error,	for	example,	by	
retransmission	(later)	

36	

Simple	Error	Detec-on	–	Parity	Bit	
•  Take	D	data	bits,	add	1	check	bit	that	is	the	sum	of	the	D	
bits	
–  Sum	is	modulo	2	or	XOR	

09/04/17	

7	

37	

Parity	Bit	(2)	
•  How	well	does	parity	work?	

– What	is	the	distance	of	the	code?	
		
–  How	many	errors	will	it	detect/correct?	
		

•  What	about	larger	errors?	
		

38	

Checksums	
•  Idea:	sum	up	data	in	N-bit	words	

– Widely	used	in,	e.g.,	TCP/IP/UDP	

•  Stronger	protec-on	than	parity	

1500	bytes	 16	bits	

39	

Internet	Checksum	
•  Sum	is	defined	in	1s	complement	arithme-c	(must	add	
back	carries)	
–  And	it’s	the	nega-ve	sum	

•  “The	checksum	field	is	the	16	bit	one's	complement	of	the	one's	
complement	sum	of	all	16	bit	words	…”	–	RFC	791	

40	

Internet	Checksum	(2)	
Sending:	
1. Arrange	data	in	16-bit	words	

2. Put	zero	in	checksum	posi-on,	add	
	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

41	

Internet	Checksum	(3)	
Sending:	
1. Arrange	data	in	16-bit	words	
2. Put	zero	in	checksum	posi-on,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	(complement)	to	get	sum	

0001
f203
f4f5
f6f7

+(0000)

2ddf0

ddf0

+ 2

ddf2

220d

42	

Internet	Checksum	(4)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

09/04/17	

8	

43	

Internet	Checksum	(5)	
Receiving:	
1. Arrange	data	in	16-bit	words	
2. Checksum	will	be	non-zero,	add	

3. Add	any	carryover	back	to	get	16	bits	

4. Negate	the	result	and	check	it	is	0	

0001
f203
f4f5
f6f7

+ 220d

2fffd

fffd

+ 2

ffff

 0000

44	

Internet	Checksum	(6)	
•  How	well	does	the	checksum	work?	

– What	is	the	distance	of	the	code?	
–  How	many	errors	will	it	detect/correct?	
		

•  What	about	larger	errors?	
		

45	

Cyclic	Redundancy	Check	(CRC)	
•  Even	stronger	protec-on	

–  Given	n	data	bits,	generate	k	check	bits	such	that	the	n+k	bits	
are	evenly	divisible	by	a	generator	C		

•  Example	with	numbers:	
– Message	=	302,	k	=	one	digit,	C	=	3	

46	

CRCs	(2)	
•  The	catch:	
–  It’s	based	on	mathema-cs	of	finite	fields,	in	which	
“numbers”	represent	polynomials	

–  e.g.,	10011010	is	x7	+	x4	+	x3	+	x1		

•  What	this	means:	
– We	work	with	binary	values	and	operate	using	modulo	2	
arithme-c	

47	

CRCs	(3)	
•  Send	Procedure:	
1.  Extend	the	n	data	bits	with	k	zeros	
2.  Divide	by	the	generator	value	C	
3.  Keep	remainder,	ignore	quo-ent	
4.  Adjust	k	check	bits	by	remainder	

•  Receive	Procedure:	
1.  Divide	and	check	for	zero	remainder	

CRCs	(4)	

48	

Data	bits:	
1101011111	

	

Check	bits:	
C(x)=x4+x1+1	
C	=	10011	

k	=	4		
	

1	0	0	1	1	1		1		0		1		0		1		1		1		1		1		

09/04/17	

9	

CRCs	(5)	

49	 50	

CRCs	(6)	
•  Protec-on	depend	on	generator	

–  Standard	CRC-32	is	1	0000	0100	1100	0001	0001	1101	1011	
0111	

		

•  Proper-es:	
–  HD=4,	detects	up	to	triple	bit	errors	
–  Also	odd	number	of	errors		
–  And	bursts	of	up	to	k	bits	in	error	
–  Not	vulnerable	to	systema-c	errors	(i.e.,	moving	data	around)	
like	checksums	

51	

Error	Detec-on	in	Prac-ce	
•  CRCs	are	widely	used	on	links	
– Ethernet,	802.11,	ADSL,	Cable	…	

•  Checksum	used	in	Internet		
–  IP,	TCP,	UDP	…	but	it	is	weak	

•  Parity	
–  Is	lijle	used	

52	

Error	Correc-on	(§3.2.1)	
•  Some	bits	may	be	received	in	error	due	to	noise.	
How	do	we	fix	them?	
– Hamming	code	
– Other	codes	

•  And	why	should	we	use	detec-on	when	we	can	use	
correc-on?	

53	

Why	Error	Correc-on	is	Hard	
•  If	we	had	reliable	check	bits	we	could	use	them	to	
narrow	down	the	posi-on	of	the	error	
–  Then	correc-on	would	be	easy	

•  But	error	could	be	in	the	check	bits	as	well	as	the	data	
bits!	
–  Data	might	even	be	correct		

54	

Intui-on	for	Error	Correc-ng	Code	
•  Suppose	we	construct	a	code	with	a	Hamming	distance	
of	at	least	3	
–  Need	≥3	bit	errors	to	change	one	valid	codeword	into	another	
–  Single	bit	errors	will	be	closest	to	a	unique	valid	codeword	

•  If	we	assume	errors	are	only	1	bit,	we	can	correct	them	
by	mapping	an	error	to	the	closest	valid	codeword	
– Works	for	d	errors	if	HD	≥	2d	+	1	

09/04/17	

10	

55	

Intui-on	(2)	
•  Visualiza-on	of	code:	

A

B

Valid	
codeword	

Error	
codeword	

56	

Intui-on	(3)	
•  Visualiza-on	of	code:	

A

B

Valid	
codeword	

Error	
codeword	

Single		
bit	error	
from	A	

Three	bit		
errors	to		
get	to	B	

57	

Hamming	Code	
•  Gives	a	method	for	construc-ng	a	code	with	a	distance	
of	3	
–  Uses	n	=	2k	–	k	–	1,	e.g.,	n=4,	k=3	
–  Put	check	bits	in	posi-ons	p	that	are	powers	of	2,	star-ng	with	
posi-on	1	

–  Check	bit	in	posi-on	p	is	parity	of	posi-ons	with	a	p	term	in	
their	values	

•  Plus	an	easy	way	to	correct	[soon]	

58	

Hamming	Code	(2)	
•  Example:	data=0101,	3	check	bits	

–  7	bit	code,	check	bit	posi-ons	1,	2,	4	
–  Check	1	covers	posi-ons	1,	3,	5,	7	
–  Check	2	covers	posi-ons	2,	3,	6,	7	
–  Check	4	covers	posi-ons	4,	5,	6,	7	

																			_		_		_		_		_		_		_	
	 1			2			3			4			5			6			7	

59	

Hamming	Code	(3)	
•  Example:	data=0101,	3	check	bits	

–  7	bit	code,	check	bit	posi-ons	1,	2,	4	
–  Check	1	covers	posi-ons	1,	3,	5,	7	
–  Check	2	covers	posi-ons	2,	3,	6,	7	
–  Check	4	covers	posi-ons	4,	5,	6,	7	

																		0		1		0		0		1		0		1	
	
p1=	0+1+1	=	0,		p2=	0+0+1	=	1,		p4=	1+0+1	=	0	

1			2			3			4			5			6			7	

60	

Hamming	Code	(4)	
•  To	decode:	

–  Recompute	check	bits	(with	parity	sum	including	the	check	bit)	
–  Arrange	as	a	binary	number	
–  Value	(syndrome)	tells	error	posi-on	
–  Value	of	zero	means	no	error	
–  Otherwise,	flip	bit	to	correct	

09/04/17	

11	

61	

Hamming	Code	(5)	
•  Example,	con-nued	

														0		1		0		0		1		0		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	

62	

Hamming	Code	(6)	
•  Example,	con-nued	

														0		1		0		0		1		0		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+0+1	=	0,	
p4=	0+1+0+1	=	0	
	

Syndrome	=	000,	no	error	
Data	=	0	1	0	1	

1			2			3			4			5			6			7	

63	

Hamming	Code	(7)	
•  Example,	con-nued	

														0		1		0		0		1		1		1	
	
p1=																													p2=		
p4=			
	

Syndrome	=			
Data	=	

1			2			3			4			5			6			7	

64	

Hamming	Code	(8)	
•  Example,	con-nued	

														0		1		0		0		1		1		1	
	
p1=	0+0+1+1	=	0,			p2=	1+0+1+1	=	1,	
p4=	0+1+1+1	=	1	
	

Syndrome	=	1	1	0,	flip	posi-on	6	
Data	=	0	1	0	1	(correct	ager	flip!)	

1			2			3			4			5			6			7	

65	

Other	Error	Correc-on	Codes	
•  Codes	used	in	prac-ce	are	much	more	involved	than	
Hamming	

•  Convolu-onal	codes	(§3.2.3)	
–  Take	a	stream	of	data	and	output	a	mix	of	the	recent	input	
bits	

– Makes	each	output	bit	less	fragile	
–  Decode	using	Viterbi	algorithm		(which	can	use	bit	confidence	
values)	

66	

Other	Codes	(2)	–	LDPC		
•  Low	Density	Parity	Check	(§3.2.3)	

–  LDPC	based	on	sparse	matrices	
–  Decoded	itera-vely	using	a	belief	
propaga-on	algorithm	

–  State	of	the	art	today	
•  Invented	by	Robert	Gallager	in		
1963	as	part	of	his	PhD	thesis	
–  Promptly	forgojen	un-l	1996	…		

Source:	IEEE	GHN,	©	2009	IEEE	

09/04/17	

12	

67	

Detec-on	vs.	Correc-on	
•  Which	is	bejer	will	depend	on	the	pajern	of	errors.	For	
example:	
–  1000	bit	messages	with	a	bit	error	rate	(BER)	of	1	in	10000	

•  Which	has	less	overhead?	
–  It	depends!	We	need	to	know	more	about	the	errors	

68	

Detec-on	vs.	Correc-on	(2)	
1.  Assume	bit	errors	are	random	

–  Messages	have	0	or	maybe	1	error	

•  Error	correc-on:		
–  Need	~10	check	bits	per	message	
–  Overhead:	

•  Error	detec-on:		
–  Need	~1	check	bit	per	message	plus	1000	bit	retransmission	1/10	of	the	

-me	
–  Overhead:	

69	

Detec-on	vs.	Correc-on	(3)	
2.  Assume	errors	come	in	bursts	of	100	consecu-vely	garbled	bits	

–  Only	1	or	2	messages	in	1000	have	errors	

•  Error	correc-on:		
–  Need	>>100	check	bits	per	message	
–  Overhead:	

•  Error	detec-on:		
–  Can	use	32	check	bits	per	message	plus	1000	bit	resend	2/1000	of	the	-me	
–  Overhead:	

70	

Detec-on	vs.	Correc-on	(4)	
•  Error	correc-on:		
– Needed	when	errors	are	expected	

•  Small	number	of	errors	are	correctable	
– Or	when	no	-me	for	retransmission	

•  Error	detec-on:		
– More	efficient	when	errors	are	not	expected	
– And	when	errors	are	large	when	they	do	occur	

71	

Error	Correc-on	in	Prac-ce	
•  Heavily	used	in	physical	layer	

–  LDPC	is	the	future,	used	for	demanding	links	like	802.11,	DVB,	WiMAX,	LTE,	
power-line,	…	

–  Convolu-onal	codes	widely	used	in	prac-ce	

•  Error	detec-on	(with	retransmission)	is	used	in	the	link	layer	and	above	
for	residual	errors	

•  Correc-on	also	used	in	the	applica-on	layer	
–  Called	Forward	Error	Correc-on	(FEC)	
–  Normally	with	an	erasure	error	model	(en-re	packets	are	lost)	
–  E.g.,	Reed-Solomon	(CDs,	DVDs,	etc.)	

