Operating Systems and Networks

TCP Summary

Adrian Perrig
Network Security Group
ETH Zirich

Connection Establishment (6.5.5, 6.5.7, 6.2.2)

* Howto set up connections
— We'll see how TCPdoes it

— Network —— —f

Connection Establishment

* Both sender and receiver must be ready before we
start the transfer of data

— Need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)

* This is signaling
— It sets up state at the endpoints
— Like “dialing” for a telephone call

Three-Way Handshake

* Three steps: Active party Passive party
) (client) (server)
— Client sends SYN(x) 1
— Server replieswith SYN(y)ACK(x+1)
— Client replies with ACK(y+1)
— SYNs are retransmitted if lost

* Sequence and ack numbers
carried on further segments

TCP Connection State Machine

* Captures the states (rectangles) and transitions (arrows)
— A/B means event Atriggersthetransition, with action B

(Start)

CLOSED

Both parties LISTEN- | | CLOSE-

. SYN/SYN + ACK
run instans | (swep2 /ore sy RanasiaRe
i
maChIne ROVD SYN/SYN + ACK

of this state
(Data transfer state)

. ACK/— SYN + ACKIACK
"""""""""" ESTABLISHED |~—(step 3 of the 3-way handshake)

CONNECT/SYN (Step 1 of the 3-way handshake)

CLOSE/~

SEND/SYN

(simultaneous open)

Connection Release (6.5.6-6.5.7,6.2.3)

* How to release connections
— We'll see how TCPdoes it

TCP Connection Release

* Two steps: Active party Passive party
— Active party sends FIN(x), passive
party sends ACK
— Passive party sends FIN(y), active
party sends ACK
— FINs are retransmitted if lost

* Each FIN/ACK closes one direction
of data transfer

TCP Connection State Machine

| ESTABLISHED
CLOSE/FIN LY FINIACK

‘ /4 (Actve close) (Passivéhdlose)

- I ;
v | [== | [
of this state AcK] . ACK-- | cosemn
machine | ; DT
} (Timeout/) } :

CLOSED |wnnemnvn-’ AR /

(Go back o start)

Sliding Windows (§3.4, §6.5.8)

* The sliding window algorithm
— Pipelining and reliability
— Building on Stop-and-Wait

R mm

—— Network —E
0 <0 <0 <0

Sliding Window — Sender

* Sender buffers up to W segments until they are
acknowledged
— LFS=LAST FRAME SENT, LAR=LAST ACK REC'D
— Sends while LFS —LAR<W
Sliding W=5

Window Available
- L TR P -
A A
LAR LFS seq. number

Flow Control (§6.5.8)

* Adding flow control to the sliding window algorithm
— To slow the over-enthusiastic sender

Flow Control

* Avoid loss at receiver by telling sender the available
buffer space
— win=#Acceptable, not W (from LAS)
W=5 Acceptable

. [Fpishedacked do dig] |-
¢

—
LAS seq. number

Flow Control (3)

Sonder Receiver Receiver's
buer

* TCP-style example - K
—seq/ack sliding window =T>]
—Flow control with win &5 —| v
—seQ + length < Ack+wiN s K‘%’f
—4KB buffer at receiver o v
—Circular buffer of bytes % —

et
13

Retransmissions

* With sliding window, the strategy for detecting loss is
the timeout
— Set timer whena segment is sent
— Cancel timer when ack is received
— If timer fires, retransmit data as lost

Adaptive Timeout

* Keep smoothed estimatesof the RTT (1) and variance in RTT (2)
— Update estimates with a moving average
1. SRTTy, = 0.9*SRTTy + 0.1*RTTy,;
2. Svarys; = 0.9*Svary +0.1*|RTTy.— SRTTy.|

* Set timeout toa multiple of estimates
— To estimate the upper RTT in practice
— TCP Timeouty = SRTTy +4*Svary

Example of Adaptive Timeout (2)

1000 =

Early

00 | timeout %—7 Timeout (SRTT + 4*Svar)

600 (i

Seconds

Effects of Congestion

* What happens to performance as we increase the load?

Capacity

o

@ @ Onset of
a 2 ‘\ . B | congestion
% B Desired 8

S Z response 2

E A g

‘g \Congestion é‘

S collapse a

o

o

6]

Offered load (packets/sec) Offered load (packets/sec)

Congestion Characteristics
* Link flooding causes high loss rates forincoming traffic
* Mathis, Semke, Mahdavi, Ott [Sigcomm '97]:
TCP Throughput ~ MSS/RTI“‘c*q'l/2
q is loss prob, cis constant close to 1
* Note: very low throughput for high loss rate

* Result
— Few legitmate
clients served

Optimal case

Typical

ATy
\ Internet host

during congestion

link capacity

Locoming Laffic e

Bandwidth Allocation

* Important task for network is to allocate its capacity to
senders
— Good allocation is efficient and fair

 Efficient means most capacity is used but thereis no
congestion

* Fair means every sender gets a reasonable share the
network

Max-Min Fairness

* |ntuitively, flows bottlenecked on a link get an
equal share of that link

* Max-min fair allocation is one that:

— Increasing the rate of one flow will decrease the rate
of a smaller flow

— This “maximizes the minimum” flow

Max-Min Example
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
= A
A (E— — () -
R1 R ~ R3 B
B Bottleneck
¢ \
_) /. __ -C
Co!) ’ —
D¢ R4 ~ R5 Re D

Additive Increase Multiplicative Decrease
(AIMD) (§6.3.2)

* Bandwidth allocation models

— Additive Increase Multiplicative Decrease (AIMD) control law

L Rea

AIMD Sawtooth

* Produces a “sawtooth” pattern over time for rate of
each host
— This is the TCP sawtooth (later)

Host 1 or pmyltiplicative Additive
2’s Rate "pecrease Increase

AV

Time

AIMD Properties

* Converges to an allocation that is efficient and fair when

hosts run it
— Holds for more general topologies

* Other increase/decrease control laws do not! (Try MIAD,

MIMD, AIAD)

* Requires only binary feedback from the network

Feedback Signals

* Several possible signals, with different pros/cons
— We'll look at classic TCP that uses packet loss asa signal

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno +Hard to get wrong
Cubic TCP (Linux -Hear about congestionlate
Packet delay Compound TCP +Hear about congestion early
(Windows) -Need to infer congestion
Router TCPs with Explidt +Hear about congestion early
indication | CongestionN octificaion -Require router support

Sliding Window ACK Clock

* Each in-order Ack advances the sliding window and lets
a new segment enter the network

— Acks “clock” data segments

201918171615141312 11 Data

— P> —
== - =V
NN
Ack1l 2345 910

TCP Slow Start (§6.5.10)

* How TCP implements AIMD, part 1
— “Slow start” is a component of the Al portion of AAIMD

Slow-start
p— — /'/'

Slow-Start Solution

* Combined behavior, after first time

— Most time spend near right value

Window

cwndc

cwndeAL-‘L——————__;g,d
Fixed Al ph

ssthresh
Slow-start AT

Time
S

Slow-Start (Doubling) Timeline

TCP Sender TCP Receiver

{ ——— Data
1

|
[
[

cwnd=1
Acknowledgment ————

cwnd=2 1 RTT, 1 packet

Increment oand 1 RTT, 2 packets

cwnd=3
by 1 segment cwnd=4
size for each cwnd=5 1 RTT, 4 packets
ACK cwnd=6

cwnd=7

cwnd=8 1 RTT, 4 packets

(pipe is full)

Additive Increase Timeline

TCP Sender
cwnd=1
Acknowledgment ——
cwnd=2
cwnd=3
Increment cwnd by
1 segment size evay
cwnd ACKs (or 1 cwnd=4
RTT)
cwnd=5

TCP Receiver

Data

1 RTT, 1 packet

1 RTT, 2 packets

1 RTT, 3 packets

1 RTT, 4 packets

[St i S

- 1 RTT, 4 packets
(pipe is full)

TCP Fast Retransmit / Fast Recovery
(§6.5.10)
* How TCP implements AIMD, part 2

— “Fast retransmit” and “fast recovery” are the MD portion of
AIMD

Fast Retransmit

» Treat three duplicate ACKs as a loss
— Retransmit next expected segment
— Some repetition allows for reordering, but still detects loss

quickly
==W 2 =F
= -
Ack 1 2 4555555

Fast Retransmit (2)

xt 12 Data 14 was
Ack 12 lost earlier, but
Ack 13 got 15 to 20
Ack 13 —]

Ack 13 Data 20

Third duplicate

ACK, so send 14 %

Retransmission fills
in the hole at 14

Data 14

ACK jumps after A;;(.ZO
loss is repaired e

Fast Recovery

* First fast retransmit, and MD cwnd

* Then pretend further duplicate ACKs are the expected
ACKs

— Lets send new segments for received ACKs
— Reconcile views when the ACK jumps

=

Ack

T

555555

e
Ne=a|
B —]

Fast Recovery (2)

Data 14 was
lost earlier, but

Third duplicae got 15 to 20
ACK, so send 14 Data 20

Set ssthresh,

Retransmission fils
cwnd = omnd/2

Datal4| in the holeat 14

More ACKs advance
window; may send
egments before jump

Data 21
Data 22

Exit Fast Recovery

TCP Header

Source port Destination port
Sequence number
Acknowledgement number
TCP C|E|U|A|P|R|S|F
header W|CIR|C|S|S|Y]I Window size
length R[E|G[K|H| T| N[N
Checksum Urgent pointer
T Options (0 or more 32-bit words) J‘:

Interesting Questions

How is MSS / MTU determined?
What happens if UDP does not implement congestion cntrol?
— Do modern UDP applications need to implement congestion control ?
— What is therelationship with network neutrality?
What if different congestion control schemes are used concurrently?
What can go wrong?
Can a malicious host obtain an unfair advantage?
Why size would you pick for router buffers? Large or small? Which one
will result in better performance if standard TCP is used?

