Operating Systems and Networks

TCP Summary

Adrian Perrig
Network Security Group
ETH Zirich

Connection Establishment(6.5.5, 6.5.7, 6.2.2)

* How to set up connections
— WEe'll see how TCP does it

SYN! ACK! SYNACK!

— Network —

Connection Establishment

* Both sender and receiver must be ready before we
start the transfer of data

— Need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)

* Thisis signaling
— |t sets up state at the endpoints
— Like “dialing” for a telephone call

Three-Way Handshake

* Three ste pS: Active party Passive party
_ (client) (server)
— Client sends SYN(x) 1
: . Sy
— Server replies with SYN(y)ACK(x+1) W}
— Client replies with ACK(y+1) 5E<l=\'% e
— SYNs are retransmitted if lost (N
(SEQ=X+§
* Sequence and ack numbers Ay

carried on further segments

TCP Connection State Machine

* Captures the states (rectangles) and transitions (arrows)
— A/B means event A triggers the transition, with action B

Both parties

run instances

of this state
machine

-

(Start)

CLOSED

CONNECT/SYN (Step 1 of the 3-way handshake)

A

LISTEN/— CLOSE/-

4

SYN/SYN + ACK

(Step 2 ,/of the 3-way handshake) | LISTEN

'
]

SYN
RCVD
i

RST/- /’ k

\

- CLOSE/— N

SEND/SYN _ SYN

SYN/SYN + ACK

(Data transfer state)

- SENT
(simultaneous open)

ESTABLISHED |-—SYN + ACKIACK ___/J

(Step 3 of the 3-way handshake)

Connection Release (6.5.6-6.5.7, 6.2.3)

* How to release connections
— We'll see how TCP does it

TCP Connection Release

e Two steps: Active party Passive party
— Active party sends FIN(x), passive
party sends ACK %}
— Passive party sends FIN(y), active N ey
party sends ACK St ackexr)
— FINs are retransmitted if lost V
2
. . (SEQ=x+1, pck.
* Each FIN/ACK closes one direction W)
of data transfer

TCP Connection State Machine

Both parties
run instances
of this state
machine

| ESTABLISHED
'
)
'
CLOSE/FIN J FINJACK
(Active close) (Passive\close)
) LT i .
FIN FIN/JACK CLC')SE
WAIT 1 CLOSING WAIT
i
ACKI/- ACK/- i CLOSE/FIN
\
FIN + ACK/IACK
FIN - TIME LAACS}I
WAT2 FINJACK WAIT .
)
_— | , .
(Timeout/) 1:
|}
CLOSED |aoccmmmee- ACKI- . ’

(Go back to start)

Sliding Windows (§3.4, §6.5.8)

* Thesliding window algorithm
— Pipelining and reliability
— Building on Stop-and-Wait

B

S Network —5

0 < < <{

Sliding Window — Sender

* Sender buffers up to W segments until they are
acknowledged

— LFS=LAST FRAME SENT, LAR=LAST ACK REC'D
— Sends while LFS—LAR W
Sliding W=5

Window /Available
Acked U}wacked Unavai‘labl‘e
T T .

LAR LFS seq. humber

Flow Control (§6.5.8)

* Adding flow control to the sliding window algorithm

— To slow the over-enthusiastic sender

Please slow down!]

|
g Network —

-
e

11

Flow Control

Avoid loss at receiver by telling sender the available
buffer space

— WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
A /
(v
Fi‘nisl+ed Acked - Tc#o h‘igh
! -

LAS seq. number

Flow Control (3)

Sender Receiver Receiver's
Application buffer
Gossa K 0 4K
* TCP-style example [— e ¢
— SEQ/ACK sliding window J—— S —
. Application
— Flow control with WiN ~ gee—+ RS \

—— —_—

— SEQ + length < ACK+WIN o — —
arieng squce P -

o 4 K B b U ffe r at rece |Ve I — i ;;i-;ﬁgﬁgéé@é}w--“" \l/

: ender ma - ‘_-J__--.---""\-- w
— Circular buffer of bytes =wwex—
s K [SEa- ¥

=59 = %5057 CHEDR
""""" — R

13

Retransmissions

* With sliding window, the strategy for detectingloss is
the timeout

— Set timer when a segment is sent
— Cancel timer when ack is received
— |If timer fires, retransmit data as lost

;[Retransmit!]
<

14

Adaptive Timeout

Keep smoothed estimates of the RTT (1) and variance in RTT (2)

— Update estimates with a moving average
1. SRTTy,; =0.9*SRTT, + 0.1*RTTy,,
2. Svary,;=0.9*Svary+ 0.1*|RTTy,;— SRTTy.4|

Set timeout to a multiple of estimates

— To estimate the upper RTT in practice
— TCP Timeouty = SRTT + 4*Svar,

15

Exa

RTT (ms)

1000
900
800
700

600 -
500 -
400 -
300 -
200 -

100
0

mple of Adaptive Timeout (2)

Early

| timeout . Timeout (SRTT + 4*Svar)

0 50 100 150 200
Seconds

16

Effects of Congestion

What happens to performance as we increase the load?

A A
o | Capacity
& m Onset of
~ o] -
1% \ _ c | congestion
% Desired S \
= response -
. | =
*g Y.‘\Congestion %
S collapse I
o
O ()
Q) :
= —

Offered load (packets/sec) Offered load (packets/sec)

17

Congestion Characteristics
Link flooding causes high loss rates for incoming traffic
Mathis, Semke, Mahdavi, Ott [Sigcomm '97]:
TCP Throughput ~ MSS/RTT*c*q1/2
g is loss prob, c is constant close to 1
Note: very low throughput for high loss rate

Result
— Few legitmate

Optimal case

clients served

Typical
Internet host

Application throughput

during congestion

link capacity :

Incoming traffic rate

Bandwidth Allocation

* Important task for network is to allocate its capacity to
senders

— Good allocation is efficient and fair

* Efficient means most capacity is used but thereis no
congestion

* Fair means every sender gets a reasonable share the
network

19

Max-Min Fairness

* Intuitively, flows bottlenecked on a link get an
equal share of that link

* Max-min fair allocation is one that:

— Increasing the rate of one flow will decrease the rate
of a smaller flow

— This “maximizes the minimum?” flow

Max-Min Example
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
NA
A - () .
R1 R Y R3
Be Bottlenec\lf
_ 7\ ¥ 4 _
Cce ! () : T
oo R4 ~ R5 R6

21

Additive Increase Multiplicative Decrease
(AIMD) (§6.3.2)

e Bandwidth allocation models

— Additive Increase Multiplicative Decrease (AIMD) control law

Sawtooth

A

N
7

22

AIMD Sawtooth

Produces a “sawtooth” pattern over time for rate of
each host

— This is the TCP sawtooth (later)

Host 1 or pyltiplicative Additive
2sRate pecrease Increase

SV

Time s

23

AIMD Properties

Converges to an allocation that is efficient and fair when
hosts run it

— Holds for more general topologies

Other increase/decrease control laws do not! (Try MIAD,
MIMD, AIAD)

Requires only binary feedback from the network

24

Feedback Signals

* Several possible signals, with different pros/cons
— WEe'll look at classic TCP that uses packet loss as a signal

Signal

Example Protocol

Pros / Cons

Packet loss

TCP NewReno
Cubic TCP (Linux)

+Hard to get wrong
-Hear about congestion late

Packet delay

Compound TCP
(Windows)

+Hear about congestion early
-Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

+Hear about congestion early
-Require router support

25

Sliding Window ACK Clock

* Each in-order Ack advances the sliding window and lets
a new segment enter the network

— ACKs “clock” data segments

201918171615 14131211 Data

i anaaan

Ack 1 2 345 6 7 8 910

26

TCP Slow Start (§6.5.10)

* How TCP implements AIMD, part 1

— “Slow start” is a component of the Al portion of AIMD

I __] Slow-start
—
>

Slow-

Start Solution

* Combined behavior, after first time
— Most time spend near right value

Window 4
cwndc
cwnd peaLl '1.‘ ------------ 7{—7
Fixed Al phase
ssthresh //
Slow-start Al =7

28

Slow-Start (Doubling) Timeline

TCP Sender TCP Recelver
cwnd=1 Data
Acknowledgment 7

cwnd=2 — 1 RTT, 1 packet
Increment cwnd cwnd=3 — 1 RTT, 2 packets
by 1 segment cwnd=4 =
size for each cwnd=5 — 1 RTT, 4 packets
ACK cwnd=6 .

cwnd=7

cwnd=8 - 1 RTT, 4 packets

(pipe is full)

29

Additive Increase Timeline

Acknowledgment

Increment cwnd by
1 segment size every
cwnd ACKs (or 1
RTT)

TCP Sender TCP Receiver
cwnd=1 Data
cwnd=2 — 1 RTT, 1 packet

cwnd=3

cwnd=4

cwnd=5

J\

— 1 RTT, 2 packets

—
—

— 1 RTT, 3 packets

)

— 1 RTT, 4 packets

et
-

- —
-
™
—
“--
—
- .

-
™
- -

»— 1 RTT, 4 packets
(pipe is full)

-~
--~~_.-
- -

-~ -

-
-
-
-~

30

TCP Fast Retransmit / Fast Recovery

(§6.5.10)
* How TCP implements AIMD, part 2

— “Fast retransmit” and “fast recovery” are the MD portion of
AIMD

AV

= S T AIMD sawtooth _

Fast Retransmit

* Treat three duplicate ACKs as a loss
— Retransmit next expected segment
— Some repetition allows for reordering, but still detects loss

quickly
== HHHHHHAHA =
Ack1 234556505655

Third duplicate
ACK, so send 14

Fast Retransmit (2)

Ack 10
Ack 11
Ack 12
Ack 13
Ack 13
Ack 13

Ack 13

Ack 13

ACK jumps after
loss is repaired

Ack 20

. —

—

Data 20

Data 14

Data 14 was
lost earlier, but
got 15to 20

Retransmission fills
in the hole at 14

33

Fast Recovery

* First fast retransmit, and MD cwnd

* Then pretend further duplicate ACKs are the expected
ACKs
— Lets send new segments for received ACKs
— Reconcile views when the ACK jumps

ST

Ack 1 2 3 4555555

Third duplicate
ACK, so send 14

Fast Recovery (2)

Set ssthresh,
cwnd = cwnd/2

More ACKs advance
window; may send
segments before jump

Exit Fast Recovery

Data 20

Data 14

Data 21
Data 22

Data 14 was
lost earlier, but
got 15to 20

Retransmission fills
in the hole at 14

35

TCP Header

Source port Destination port
Sequence number
Acknowledgement number
TCP CIE(U|A|P|R|S|F
header WICIRIC| S| S|Y]I Window size
length RIEIG|K|H| T|N|N
Checksum

Urgent pointer

i

Options (0 or more 32-bit words)

[

36

Interesting Questions

How is MSS / MTU determined?

What happens if UDP does not implement congestion control?
— Do modern UDP applications need to implement congestion control?
— What is the relationship with network neutrality?

What if different congestion control schemes are used concurrently?
What can go wrong?

Can a malicious host obtain an unfair advantage?

Why size would you pick for router buffers? Large or small? Which one
will result in better performance if standard TCP is used?

37

