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Networks and Operating Systems (252-0062-00)

Chapter 9: I/O Subsystems
Never underestimate the KISS principle!
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 Last time

 On-disk data structures

File representation

Block allocation

Directories

 FAT32 case study

Very simple block interface

Single table

 FFS case study

Blocked interface

Uses inodes, direct, (single, double, triple …) indirect blocks

 NTFS case study

Extent interface

Direct and indirect extent pointers
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Cache re-load and a magic trick
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 True or false (raise hand)

1. Directory structures can never contain cycles

2. Access control lists scale to large numbers of principals

3. Capabilities are stored with the principals and revocation can be complex

4. POSIX (Unix) access control is scalable to large numbers of files

5. Named pipes are just (special) files in Unix

6. Memory mapping improves sequential file access

7. Accessing different files on disk can have different speeds

8. The FAT filesystem enables fast random access

9. FFS enables fast random access for small files

10.The minimum storage for a file in FFS is 8kB (4kB inode + block)

11.Block groups in FFS are used to simplify the implementation

12.Multiple hard links in FFS are stored in the same inode

13.NTFS stores files that are contiguous on disk more efficiently than FFS

14.The volume information in NTFS is a file in NTFS
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Our Small Quiz
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In-memory data structures
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Opening a file

 Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inodedirectory structure

User space Kernel Disk
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Reading and writing

 Per-process open file table → index into…

 System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process

open file table

User space Kernel Disk

System

open file table
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Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual disk, 

or RAM disk
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Page Cache

 A page cache caches pages rather than disk blocks using virtual 

memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure
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Two layers of caching?

Memory-mapped files
File access with 
read()/write()

Page cache

Buffer cache

File system
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Unified Buffer Cache

Memory-mapped files
File access with 
read()/write()

Buffer cache

File system
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Filesystem Recovery

 Consistency checking – compares data in directory structure 

with data blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another 

storage device (floppy disk, magnetic tape, other magnetic disk, 

optical)

 Recover lost file or disk by restoring data from backup
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Disks, Partitions and Logical Volumes
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Partitions

 Multiplex single disk among >1 file systems

 Contiguous block ranges per FS

File system C
File system 

B
File system A

P
a
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n
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b
le

Logical block address (LBA) on a single disk0
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Logical volumes

 Emulate 1 virtual disk from >1 physical ones

 Single file system spanning >1 disk

File system A

(part 1)

File system A

(part 2)

File system A

(part 3)

Disk 1 Disk 2 Disk 3

Single logical volume with file system A
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Multiple file systems

 How to name files in multiple file systems?

 Top-level volume names:

 Windows A:, B:, C:, D:, etc. (problematic)

 \\fs-systems.ethz.ch\

 Bind “mount points” in name space

 Unix, etc. (flexible)
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Mount points
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File hierarchy with mounts

/

home etc dev var usr

htor netos shm run lock bin

Mount point

Normal directory
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 Virtual File Systems (VFS) provide an object-oriented way of 

implementing file systems.

 VFS allows the same system call interface (the API) to be used 

for different types of file systems.

 The API is to the VFS interface, rather than any specific type of 

file system.

Virtual File Systems
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Virtual File System

File system interface

VFS interface

FAT file system
EXT4 file 

system

NFS network 

file system

Advanced: check out Linux’ FUSE (Filesystem in Userspace)
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Rest of today: I/O

1. Recap: what devices look like

2. Device drivers

3. The I/O subsystem
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Recap from CASP: 

What does a device look like?
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Recap: What is a device?

Specifically, to an OS programmer:

 Piece of hardware visible from software

 Occupies some location on a bus

 Set of registers

 Memory mapped or I/O space

 Source of interrupts

 May initiate Direct Memory Access transfers
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Recap: Registers

 Details of registers given 

in chip “datasheets” or 

“data books”

 Information is rarely 

trusted by OS 

programmers 

From the data 

sheet for the 

PC16550 UART

(standard PC 

serial port) 
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Registers

 Slightly more readable 

version:

 From Barrelfish, in a 

language called “Mackerel”

 Compiler generates code to 

do the “bit-banging”
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Using registers

 From the Barrelfish console 

driver

 Very simple!

 Note the issues:

 Polling loop on send

 Polling loop on receive

Only a good idea for debug

 CPU must write all the data 

not much in this case
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Very simple UART driver

 Actually, far too simple!

 But this is how the first version always looks…

 No initialization code, no error handling.

 Uses Programmed I/O (PIO)

 CPU explicitly reads and writes all values to and from registers

 All data must pass through CPU registers

 Uses polling

 CPU polls device register waiting before send/receive

Tight loop!

 Can’t do anything else in the meantime

Although could be extended with threads and care…

 Without CPU polling, no I/O can occur
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Recap: Interrupts

 CPU Interrupt-request line triggered by I/O device

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Based on priority

 Some nonmaskable

 Interrupt mechanism also used for exceptions
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Interrupt-driven I/O cycle

Process A performs 

blocking I/O operation

Scheduler blocks process 

A; switches to other 

processes

Interrupt handler 

processes data

CPU resumes interrupted 

process

Driver initiates I/O 

operation with device

Process A unblocks and 

operation returns

…

…

Device starts I/O

I/O completes (or 

error occurs); device 

raises interrupt

…

CPU Device
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Recap: Direct Memory Access

 Avoid programmed I/O for lots of data

 E.g. fast network or disk interfaces

 Requires DMA controller

 Generally built-in these days

 Bypasses CPU to transfer data directly between I/O device and 

memory 

 Doesn’t take up CPU time

 Can save memory bandwidth

 Only one interrupt per transfer
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I/O protection

I/O operations can be dangerous to normal system operation!

 Dedicated I/O instructions usually privileged

 I/O performed via system calls

 Register locations must be protected

 DMA transfers must be carefully checked

 Bypass memory protection!

 How can that happen today?

Multiple operating systems on the same machine (e.g., virtualized)

 IOMMUs are beginning to appear…
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IOMMU does the same for the I/O devices as MMU does for the CPU!

➔ Translates device adresses (so called DVAs) into physical ones

➔ Uses so called IOTLB (I/O TLB)

➔ Works for DMA-capable

devices :-)

➔ Examples:

➔ Intel VT-d

➔ AMD IOMMU

➔ ...very similar in functionality

Source: Wikipedia

IOMMUs
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➔ Security features for VMs

➔ Possibility to assign different devices to different address domains

➔ By address remapping we can isolate the domains from one another, 

thus 'sandboxing' untrusted devices

Source: Intel VT-d specification

IOMMUs
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➔ IOMMUs were designed for enhancing virtualization

➔ Remapping & security features can be applied to guest virtual

machines

➔ Better performance than software-based I/O virtualization

Source: Intel VT-d specification

IOMMUs
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Source: Intel VT-d specification

➔ IOMMUs take as the 'input request' the ID consisting of:

➔ Bus ID, stored in root tables (support for multiple buses),

➔ Device ID, stored in context tables (support for multiple devices within each bus)

➔ Function ID, also stored in context tables (support for multiple func. within each 

device)

➔ Different page

table per I/O device

IOMMUs
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Source: http://codingrelic.geekhold.com/

➔ IOMMUs support page remapping

➔ Some PCI devices use 32 bit addressing

➔ IOMMU Page Tables

➔ Similar to 'standard' multi-level

page tables

➔ Write-only / read-only bits

➔ Support for huge pages

➔ Currently no support for

more extended features

(e.g., reference bits)

bounce

buffers IOMMU

IOMMUs - Address remapping
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➔ IOMMUs are much broader topic

➔ They provide also:

➔ Interrupt remapping (you can control interrupts in a similar 

way as memory accesses)

➔ Device I/O TLBs (Intel VT-d)

➔ Fault logging

➔ …

➔ You can think of many interesting use cases for them :-)

➔ Interested? New ideas?

IOMMUs
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Device drivers
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Device drivers

 Software object (module, object, process, hunk of code) which 

abstracts a device

 Sits between hardware and rest of OS

 Understands device registers, DMA, interrupts

 Presents uniform interface to rest of OS

 Device abstractions (“driver models”) vary…

 Unix starts with “block” and “character” devices
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Device driver structure: the basic problem

 Hardware is interrupt driven.

 System must respond to unpredictable I/O events

(or events it is expecting, but doesn’t know when)

 Applications are (often) blocking

 Process is waiting for a specific I/O event to occur

 Often considerable processing in between

 TCP/IP processing, retries, etc.

 File system processing, blocks, locking, etc.
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Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.
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Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.

• Can’t take too long

• Interrupts disabled?

• Can’t change much

• Interrupt context

• Arbitrary system state

• Can’t hold locks
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Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.

• Process is blocked

• Don’t even know it’s this 

process until demux
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Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread
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Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

1. Interrupt handler

i. Masks interrupt

ii. Does minimal processing

iii. Unblocks driver thread
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Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

2.Thread

i. Performs all necessary 

packet processing

ii. Unblocks user processes

iii.Unmasks interrupt 
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Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

3.User process

i. Per-process handling

ii. Copies packet to user space

iii.Returns from kernel
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Terminology – very confused!

 1st-level Interrupt Handler (FLIH)

 Linux calls this the “top half”.

 In contrast to every other OS on the planet.

 Thread is an “interrupt handler thread” in Solaris

 Other names in other systems… 
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Solution 2: deferred procedure calls (DPCs)

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt

Enqueue

DPC

(closure)

Run all 

pending 

DPCs

FLIH FLIH
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Deferred Procedure Calls

 Instead of using a thread, execute on the next process to be 

dispatched

 Before it leaves the kernel

 Solution in most versions of Unix

 Don’t need kernel threads

 Saves a context switch

 Can’t account processing time to the right process

  3rd solution: demux early, run in user space

 Covered in Advanced OS Course!
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More confusing terminology

 DPCs: also known as:

 2nd-level interrupt handlers

 Soft interrupt handlers

 Slow interrupt handlers

 In Linux ONLY: bottom-half handlers

 Any non-Linux OS (the way to think about it):

 Bottom-half = FLIH + SLIH, called from “below”

 Top-half = Called from user space (syscalls etc.), “above”
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Life cycle of an I/O request

• Send request to driver

• Block process if needed

• Request I/O

• Issue commands to 

device

• Block until interrupted

• Issue interrupt when I/O 

completed

Time

• I/O complete

• Transfer data to/from user 

space, 

• Return completion code

• Demultiplex I/O complete

• Determine source of 

request

• Handle interrupt

• Signal device driver

• I/O complete

• Generate Interrupt

Can satisfy 

request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system callSystem call

Yes

No
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The I/O subsystem
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Generic I/O functionality

 Device drivers essentially move data to and from I/O devices

 Abstract hardware

 Manage asynchrony

 OS I/O subsystem includes generic functions for dealing with 

this data

 Such as…

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

 Caching - fast memory holding copy of data

 Always just a copy

 Key to performance

 Spooling - hold output for a device

 If device can serve only one request at a time 

 E.g., printing
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The I/O subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Buffering - store data in memory while transferring between 

devices or memory

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”
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Naming and discovery

 What are the devices the OS needs to manage?

 Discovery (bus enumeration)

 Hotplug / unplug events

 Resource allocation (e.g. PCI BAR programming)

 How to match driver code to devices?

 Driver instance ≠ driver module

 One driver typically manages many models of device

 How to name devices inside the kernel?

 How to name devices outside the kernel?
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Matching drivers to devices

 Devices have unique (model) identifiers

 E.g. PCI vendor/device identifiers

 Drivers recognize particular identifiers

 Typically a list…

 Kernel offers a device to each driver in turn

 Driver can “claim” a device it can handle

 Creates driver instance for it.
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Naming devices in the Unix kernel

(Actually, naming device driver instances)

 Kernel creates identifiers for 

 Block devices

 Character devices

 [ Network devices – see later… ]

 Major device number:

 Class of device (e.g. disk, CD-ROM, keyboard)

 Minor device number:

 Specific device within a class
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Unix block devices

 Used for “structured I/O”

 Deal in large “blocks” of data at a time

 Often look like files (seekable, mappable)

 Often use Unix’ shared buffer cache

 Mountable:

 File systems implemented above block devices
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Character devices

 Used for “unstructured I/O”

 Byte-stream interface – no block boundaries

 Single character or short strings get/put

 Buffering implemented by libraries

 Examples:

 Keyboards, serial lines, mice

 Distinction with block devices somewhat arbitrary…
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Naming devices outside the kernel

 Device files: special type of file

 Inode encodes <type, major num, minor num>

 Created with mknod() system call

 Devices are traditionally put in /dev

 /dev/sda – First SCSI/SATA/SAS disk

 /dev/sda5 – Fifth partition on the above

 /dev/cdrom0 – First DVD-ROM drive

 /dev/ttyS1 – Second UART
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Pseudo-devices in Unix

 Devices with no hardware!

 Still have major/minor device numbers. Examples:

/dev/stdin

/dev/kmem

/dev/random

/dev/null

/dev/loop0

etc.

spcl.inf.ethz.ch

@spcl_eth

Old-style Unix device configuration

 All drivers compiled into the kernel

 Each driver probes for any supported devices

 System administrator populates /dev

 Manually types mknod when a new device is purchased!

 Pseudo devices similarly hard-wired in kernel
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Linux device configuration today

 Physical hardware configuration readable from /sys

 Special fake file system: sysfs

 Plug events delivered by a special socket

 Drivers dynamically loaded as kernel modules

 Initial list given at boot time

 User-space daemon can load more if required

 /dev populated dynamically by udev

 User-space daemon which polls /sys 

spcl.inf.ethz.ch

@spcl_eth

Next time:

 Network stack implementation

 Network devices and network I/O

 Buffering

 Memory management in the I/O subsystem


