
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 9: I/O Subsystems
Never underestimate the KISS principle!

spcl.inf.ethz.ch

@spcl_eth

 Last time

 On-disk data structures

File representation

Block allocation

Directories

 FAT32 case study

Very simple block interface

Single table

 FFS case study

Blocked interface

Uses inodes, direct, (single, double, triple …) indirect blocks

 NTFS case study

Extent interface

Direct and indirect extent pointers

2

Cache re-load and a magic trick

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

1. Directory structures can never contain cycles

2. Access control lists scale to large numbers of principals

3. Capabilities are stored with the principals and revocation can be complex

4. POSIX (Unix) access control is scalable to large numbers of files

5. Named pipes are just (special) files in Unix

6. Memory mapping improves sequential file access

7. Accessing different files on disk can have different speeds

8. The FAT filesystem enables fast random access

9. FFS enables fast random access for small files

10.The minimum storage for a file in FFS is 8kB (4kB inode + block)

11.Block groups in FFS are used to simplify the implementation

12.Multiple hard links in FFS are stored in the same inode

13.NTFS stores files that are contiguous on disk more efficiently than FFS

14.The volume information in NTFS is a file in NTFS

3

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

In-memory data structures

spcl.inf.ethz.ch

@spcl_eth

Opening a file

 Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inodedirectory structure

User space Kernel Disk

spcl.inf.ethz.ch

@spcl_eth

Reading and writing

 Per-process open file table → index into…

 System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process

open file table

User space Kernel Disk

System

open file table

5

spcl.inf.ethz.ch

@spcl_eth

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual disk,

or RAM disk

spcl.inf.ethz.ch

@spcl_eth

Page Cache

 A page cache caches pages rather than disk blocks using virtual

memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

spcl.inf.ethz.ch

@spcl_eth

Two layers of caching?

Memory-mapped files
File access with
read()/write()

Page cache

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Unified Buffer Cache

Memory-mapped files
File access with
read()/write()

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Filesystem Recovery

 Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another

storage device (floppy disk, magnetic tape, other magnetic disk,

optical)

 Recover lost file or disk by restoring data from backup

spcl.inf.ethz.ch

@spcl_eth

Disks, Partitions and Logical Volumes

spcl.inf.ethz.ch

@spcl_eth

Partitions

 Multiplex single disk among >1 file systems

 Contiguous block ranges per FS

File system C
File system

B
File system A

P
a

rt
it
io

n

ta
b
le

Logical block address (LBA) on a single disk0

spcl.inf.ethz.ch

@spcl_eth

Logical volumes

 Emulate 1 virtual disk from >1 physical ones

 Single file system spanning >1 disk

File system A

(part 1)

File system A

(part 2)

File system A

(part 3)

Disk 1 Disk 2 Disk 3

Single logical volume with file system A

spcl.inf.ethz.ch

@spcl_eth

Multiple file systems

 How to name files in multiple file systems?

 Top-level volume names:

 Windows A:, B:, C:, D:, etc. (problematic)

 \\fs-systems.ethz.ch\

 Bind “mount points” in name space

 Unix, etc. (flexible)

spcl.inf.ethz.ch

@spcl_eth

Mount points

spcl.inf.ethz.ch

@spcl_eth

File hierarchy with mounts

/

home etc dev var usr

htor netos shm run lock bin

Mount point

Normal directory

spcl.inf.ethz.ch

@spcl_eth

 Virtual File Systems (VFS) provide an object-oriented way of

implementing file systems.

 VFS allows the same system call interface (the API) to be used

for different types of file systems.

 The API is to the VFS interface, rather than any specific type of

file system.

Virtual File Systems

spcl.inf.ethz.ch

@spcl_eth

Virtual File System

File system interface

VFS interface

FAT file system
EXT4 file

system

NFS network

file system

Advanced: check out Linux’ FUSE (Filesystem in Userspace)

spcl.inf.ethz.ch

@spcl_eth

Rest of today: I/O

1. Recap: what devices look like

2. Device drivers

3. The I/O subsystem

spcl.inf.ethz.ch

@spcl_eth

Recap from CASP:

What does a device look like?

spcl.inf.ethz.ch

@spcl_eth

Recap: What is a device?

Specifically, to an OS programmer:

 Piece of hardware visible from software

 Occupies some location on a bus

 Set of registers

 Memory mapped or I/O space

 Source of interrupts

 May initiate Direct Memory Access transfers

spcl.inf.ethz.ch

@spcl_eth

Recap: Registers

 Details of registers given

in chip “datasheets” or

“data books”

 Information is rarely

trusted by OS

programmers 

From the data

sheet for the

PC16550 UART

(standard PC

serial port)

spcl.inf.ethz.ch

@spcl_eth

Registers

 Slightly more readable

version:

 From Barrelfish, in a

language called “Mackerel”

 Compiler generates code to

do the “bit-banging”

spcl.inf.ethz.ch

@spcl_eth

Using registers

 From the Barrelfish console

driver

 Very simple!

 Note the issues:

 Polling loop on send

 Polling loop on receive

Only a good idea for debug

 CPU must write all the data

not much in this case

spcl.inf.ethz.ch

@spcl_eth

Very simple UART driver

 Actually, far too simple!

 But this is how the first version always looks…

 No initialization code, no error handling.

 Uses Programmed I/O (PIO)

 CPU explicitly reads and writes all values to and from registers

 All data must pass through CPU registers

 Uses polling

 CPU polls device register waiting before send/receive

Tight loop!

 Can’t do anything else in the meantime

Although could be extended with threads and care…

 Without CPU polling, no I/O can occur

spcl.inf.ethz.ch

@spcl_eth

Recap: Interrupts

 CPU Interrupt-request line triggered by I/O device

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Based on priority

 Some nonmaskable

 Interrupt mechanism also used for exceptions

spcl.inf.ethz.ch

@spcl_eth

Interrupt-driven I/O cycle

Process A performs

blocking I/O operation

Scheduler blocks process

A; switches to other

processes

Interrupt handler

processes data

CPU resumes interrupted

process

Driver initiates I/O

operation with device

Process A unblocks and

operation returns

…

…

Device starts I/O

I/O completes (or

error occurs); device

raises interrupt

…

CPU Device

spcl.inf.ethz.ch

@spcl_eth

Recap: Direct Memory Access

 Avoid programmed I/O for lots of data

 E.g. fast network or disk interfaces

 Requires DMA controller

 Generally built-in these days

 Bypasses CPU to transfer data directly between I/O device and

memory

 Doesn’t take up CPU time

 Can save memory bandwidth

 Only one interrupt per transfer

spcl.inf.ethz.ch

@spcl_eth

I/O protection

I/O operations can be dangerous to normal system operation!

 Dedicated I/O instructions usually privileged

 I/O performed via system calls

 Register locations must be protected

 DMA transfers must be carefully checked

 Bypass memory protection!

 How can that happen today?

Multiple operating systems on the same machine (e.g., virtualized)

 IOMMUs are beginning to appear…

spcl.inf.ethz.ch

@spcl_eth

IOMMU does the same for the I/O devices as MMU does for the CPU!

➔ Translates device adresses (so called DVAs) into physical ones

➔ Uses so called IOTLB (I/O TLB)

➔ Works for DMA-capable

devices :-)

➔ Examples:

➔ Intel VT-d

➔ AMD IOMMU

➔ ...very similar in functionality

Source: Wikipedia

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

➔ Security features for VMs

➔ Possibility to assign different devices to different address domains

➔ By address remapping we can isolate the domains from one another,

thus 'sandboxing' untrusted devices

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

➔ IOMMUs were designed for enhancing virtualization

➔ Remapping & security features can be applied to guest virtual

machines

➔ Better performance than software-based I/O virtualization

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Source: Intel VT-d specification

➔ IOMMUs take as the 'input request' the ID consisting of:

➔ Bus ID, stored in root tables (support for multiple buses),

➔ Device ID, stored in context tables (support for multiple devices within each bus)

➔ Function ID, also stored in context tables (support for multiple func. within each

device)

➔ Different page

table per I/O device

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Source: http://codingrelic.geekhold.com/

➔ IOMMUs support page remapping

➔ Some PCI devices use 32 bit addressing

➔ IOMMU Page Tables

➔ Similar to 'standard' multi-level

page tables

➔ Write-only / read-only bits

➔ Support for huge pages

➔ Currently no support for

more extended features

(e.g., reference bits)

bounce

buffers IOMMU

IOMMUs - Address remapping

spcl.inf.ethz.ch

@spcl_eth

➔ IOMMUs are much broader topic

➔ They provide also:

➔ Interrupt remapping (you can control interrupts in a similar

way as memory accesses)

➔ Device I/O TLBs (Intel VT-d)

➔ Fault logging

➔ …

➔ You can think of many interesting use cases for them :-)

➔ Interested? New ideas?

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Device drivers

spcl.inf.ethz.ch

@spcl_eth

Device drivers

 Software object (module, object, process, hunk of code) which

abstracts a device

 Sits between hardware and rest of OS

 Understands device registers, DMA, interrupts

 Presents uniform interface to rest of OS

 Device abstractions (“driver models”) vary…

 Unix starts with “block” and “character” devices

spcl.inf.ethz.ch

@spcl_eth

Device driver structure: the basic problem

 Hardware is interrupt driven.

 System must respond to unpredictable I/O events

(or events it is expecting, but doesn’t know when)

 Applications are (often) blocking

 Process is waiting for a specific I/O event to occur

 Often considerable processing in between

 TCP/IP processing, retries, etc.

 File system processing, blocks, locking, etc.

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.

• Can’t take too long

• Interrupts disabled?

• Can’t change much

• Interrupt context

• Arbitrary system state

• Can’t hold locks

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Demux

TCP processing

Retransmissions

Timeouts

Port allocation

Etc.

• Process is blocked

• Don’t even know it’s this

process until demux

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

1. Interrupt handler

i. Masks interrupt

ii. Does minimal processing

iii. Unblocks driver thread

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

2.Thread

i. Performs all necessary

packet processing

ii. Unblocks user processes

iii.Unmasks interrupt

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt Interrupt handler

Driver thread

3.User process

i. Per-process handling

ii. Copies packet to user space

iii.Returns from kernel

spcl.inf.ethz.ch

@spcl_eth

Terminology – very confused!

 1st-level Interrupt Handler (FLIH)

 Linux calls this the “top half”.

 In contrast to every other OS on the planet.

 Thread is an “interrupt handler thread” in Solaris

 Other names in other systems… 

spcl.inf.ethz.ch

@spcl_eth

Solution 2: deferred procedure calls (DPCs)

User process

Kernel
Block Unblock

Recv()

Packet arrives;

Interrupt

Enqueue

DPC

(closure)

Run all

pending

DPCs

FLIH FLIH

spcl.inf.ethz.ch

@spcl_eth

Deferred Procedure Calls

 Instead of using a thread, execute on the next process to be

dispatched

 Before it leaves the kernel

 Solution in most versions of Unix

 Don’t need kernel threads

 Saves a context switch

 Can’t account processing time to the right process

  3rd solution: demux early, run in user space

 Covered in Advanced OS Course!

spcl.inf.ethz.ch

@spcl_eth

More confusing terminology

 DPCs: also known as:

 2nd-level interrupt handlers

 Soft interrupt handlers

 Slow interrupt handlers

 In Linux ONLY: bottom-half handlers

 Any non-Linux OS (the way to think about it):

 Bottom-half = FLIH + SLIH, called from “below”

 Top-half = Called from user space (syscalls etc.), “above”

spcl.inf.ethz.ch

@spcl_eth

Life cycle of an I/O request

• Send request to driver

• Block process if needed

• Request I/O

• Issue commands to

device

• Block until interrupted

• Issue interrupt when I/O

completed

Time

• I/O complete

• Transfer data to/from user

space,

• Return completion code

• Demultiplex I/O complete

• Determine source of

request

• Handle interrupt

• Signal device driver

• I/O complete

• Generate Interrupt

Can satisfy

request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system callSystem call

Yes

No

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

spcl.inf.ethz.ch

@spcl_eth

Generic I/O functionality

 Device drivers essentially move data to and from I/O devices

 Abstract hardware

 Manage asynchrony

 OS I/O subsystem includes generic functions for dealing with

this data

 Such as…

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

 Caching - fast memory holding copy of data

 Always just a copy

 Key to performance

 Spooling - hold output for a device

 If device can serve only one request at a time

 E.g., printing

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

 Scheduling

 Some I/O request ordering via per-device queue

 Some OSs try fairness

 Buffering - store data in memory while transferring between

devices or memory

 To cope with device speed mismatch

 To cope with device transfer size mismatch

 To maintain “copy semantics”

spcl.inf.ethz.ch

@spcl_eth

Naming and discovery

 What are the devices the OS needs to manage?

 Discovery (bus enumeration)

 Hotplug / unplug events

 Resource allocation (e.g. PCI BAR programming)

 How to match driver code to devices?

 Driver instance ≠ driver module

 One driver typically manages many models of device

 How to name devices inside the kernel?

 How to name devices outside the kernel?

spcl.inf.ethz.ch

@spcl_eth

Matching drivers to devices

 Devices have unique (model) identifiers

 E.g. PCI vendor/device identifiers

 Drivers recognize particular identifiers

 Typically a list…

 Kernel offers a device to each driver in turn

 Driver can “claim” a device it can handle

 Creates driver instance for it.

spcl.inf.ethz.ch

@spcl_eth

Naming devices in the Unix kernel

(Actually, naming device driver instances)

 Kernel creates identifiers for

 Block devices

 Character devices

 [Network devices – see later…]

 Major device number:

 Class of device (e.g. disk, CD-ROM, keyboard)

 Minor device number:

 Specific device within a class

spcl.inf.ethz.ch

@spcl_eth

Unix block devices

 Used for “structured I/O”

 Deal in large “blocks” of data at a time

 Often look like files (seekable, mappable)

 Often use Unix’ shared buffer cache

 Mountable:

 File systems implemented above block devices

spcl.inf.ethz.ch

@spcl_eth

Character devices

 Used for “unstructured I/O”

 Byte-stream interface – no block boundaries

 Single character or short strings get/put

 Buffering implemented by libraries

 Examples:

 Keyboards, serial lines, mice

 Distinction with block devices somewhat arbitrary…

spcl.inf.ethz.ch

@spcl_eth

Naming devices outside the kernel

 Device files: special type of file

 Inode encodes <type, major num, minor num>

 Created with mknod() system call

 Devices are traditionally put in /dev

 /dev/sda – First SCSI/SATA/SAS disk

 /dev/sda5 – Fifth partition on the above

 /dev/cdrom0 – First DVD-ROM drive

 /dev/ttyS1 – Second UART

spcl.inf.ethz.ch

@spcl_eth

Pseudo-devices in Unix

 Devices with no hardware!

 Still have major/minor device numbers. Examples:

/dev/stdin

/dev/kmem

/dev/random

/dev/null

/dev/loop0

etc.

spcl.inf.ethz.ch

@spcl_eth

Old-style Unix device configuration

 All drivers compiled into the kernel

 Each driver probes for any supported devices

 System administrator populates /dev

 Manually types mknod when a new device is purchased!

 Pseudo devices similarly hard-wired in kernel

spcl.inf.ethz.ch

@spcl_eth

Linux device configuration today

 Physical hardware configuration readable from /sys

 Special fake file system: sysfs

 Plug events delivered by a special socket

 Drivers dynamically loaded as kernel modules

 Initial list given at boot time

 User-space daemon can load more if required

 /dev populated dynamically by udev

 User-space daemon which polls /sys

spcl.inf.ethz.ch

@spcl_eth

Next time:

 Network stack implementation

 Network devices and network I/O

 Buffering

 Memory management in the I/O subsystem

