
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 8: Filesystem Implementation

source: xkcd.com, April 2014

spcl.inf.ethz.ch

@spcl_eth

2

Nearly made it into pop-culture

Source: http://en.wikipedia.org/wiki/Heartbleed

spcl.inf.ethz.ch

@spcl_eth

 No lecture!

3

Next Thursday (March 24th)

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

 A file name identifies a string of data on a storage device

 The file size is part of the file’s metadata

 Names provide a means of abstraction through indirection

 Names are always assigned at object creation time

 A context is implicit to a name

 A context is implicit to an object

 Name resolve may be specific to a context

 Each file has exactly one name

 The call “unlink file” always removes the contents of “file”

 A fully qualified domain name is resolved recursively starting from the left

 A full (absolute) path identifies a unique (1:1) file (piece of data)

 A full (absolute) path identifies a unique name

 Stable bindings can be changed with bind()

 Each name identifies exactly one object in a single context

4

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Access Control

spcl.inf.ethz.ch

@spcl_eth

Protection

 File owner/creator should be able to control:

 what can be done

 by whom

 Types of access

 Read

 Write

 Execute

 Append

 Delete

 List

spcl.inf.ethz.ch

@spcl_eth

Access control matrix

A B C D E F G H J …

Read

Write

Append

Execute

Delete

List

…

Principals

R
ig

h
ts

For a single file or directory:

Problem: how to scalably represent this matrix?

spcl.inf.ethz.ch

@spcl_eth

Row-wise: ACLs

 Access Control Lists

 For each right, list the principals

 Store with the file

 Good:

 Easy to change rights quickly

 Scales to large numbers of files

 Bad:

 Doesn’t scale to large numbers of principals

spcl.inf.ethz.ch

@spcl_eth

Column-wise: Capabilities

 Each principal with a right on a file holds a capability for that

right

 Stored with principal, not object (file)

 Cannot be forged or (sometimes) copied

 Good:

 Very flexible, highly scalable in principals

 Access control resources charged to principal

 Bad:

 Revocation: hard to change access rights

(need to keep track of who has what capabilities)

spcl.inf.ethz.ch

@spcl_eth

POSIX (Unix) Access Control

 Simplifies ACLs: each file identifies 3 principals:

 Owner (a single user)

 Group (a collection of users, defined elsewhere)

 The World (everyone)

 For each principal, file defines 3 rights:

 Read (or traverse, if a directory)

 Write (or create a file, if a directory)

 Execute (or list, if a directory)

spcl.inf.ethz.ch

@spcl_eth

Example

spcl.inf.ethz.ch

@spcl_eth

Full ACLs

 POSIX now supports full ACLs

 Rarely used, interestingly

 setfacl, getfacl, …

 Windows has very powerful ACL support

 Arbitrary groups as principals

 Modification rights

 Delegation rights

spcl.inf.ethz.ch

@spcl_eth

File Types

spcl.inf.ethz.ch

@spcl_eth

Is a directory a file?

 Yes…

 Allocated just like a file on disk

 Has entries in other directories like a file

 …and no…

 Users can’t be allowed to read/write to it

Corrupt file system data structures

Bypass security mechanisms

 File system provides special interface

opendir, closedir, readdir, seekdir, telldir, etc.

spcl.inf.ethz.ch

@spcl_eth

Directory implementation

 Linear list of (file name, block pointer) pairs

 Simple to program

 Lookup is slow for lots of files (linear scan)

 Hash Table – linear list with closed hashing.

 Fast name lookup

 Collisions

 Fixed size

 B-Tree – name index, leaves are block pointers

 Increasingly common

 Complex to maintain, but scales well

spcl.inf.ethz.ch

@spcl_eth

File types

 Other file types treated “specially” by the OS

 Simple, common cases:

 Executable files

 Directories, symbolic links, other file system data

 Some distinguish between text and binary

 Some have many types

 “Document” or “media” types

 Used to select default applications, editors, etc.

spcl.inf.ethz.ch

@spcl_eth

spcl.inf.ethz.ch

@spcl_eth

Unix devices and other file types

 Unix also uses the file namespace for

 Naming I/O devices (/dev)

 Named pipes (FIFOs)

 Unix domain sockets

 More recently:

 Process control (/proc)

 OS configuration and status (/proc, /sys)

 Plan 9 from Bell Labs

 Evolution of Unix: almost everything is a file

spcl.inf.ethz.ch

@spcl_eth

Executable files

 Most OSes recognize binary executables

 Sometimes with a “magic number”

 Will load, dynamically link, and execute in a process

 Other files are sometimes recognized

 E.g. “#!” script files in Unix

“#!/usr/bin/python”

spcl.inf.ethz.ch

@spcl_eth

File system operations

File operations:

 Create and variants

 Unix: mknod, mkfifo, ln –s, …

 Change access control

 Unix: chmod, chgrp, chown, setfacl, …

 Read metadata

 Unix: stat, fstat, …

 Open

 Operation: file → open file handle

spcl.inf.ethz.ch

@spcl_eth

“Files” vs. “Open Files”

 Typical operations on files:

 Rename, stat, create, delete, etc.

 Open

 Open creates an “open file handle”

 Different class of object

 Allows reading and writing of file data

spcl.inf.ethz.ch

@spcl_eth

Open File Interface

spcl.inf.ethz.ch

@spcl_eth

Kinds of files

1. Byte sequence

 The one you’re probably familiar with

2. Record sequence

 Fixed (at creation time) records

 Mainframes or minicomputer OSes of the 70s/80s

3. Key-based, tree structured

 E.g. IBM Indexed Sequential Access Method (ISAM)

 Mainframe feature, now superseded by databases

 In other words, moved into libraries

spcl.inf.ethz.ch

@spcl_eth

Byte-sequence files

 File is a vector of bytes

 Can be appended to

 Can be truncated

 Can be updated in place

 Typically no “insert”

 Accessed as:

 Sequential files (rare these days)

 Random access

spcl.inf.ethz.ch

@spcl_eth

Random access

 Support read, write, seek, and tell

 State: current position in file

 Seek absolute or relative to current position.

 Tell returns current index

 Index units:

 For byte sequence files, offset in bytes

spcl.inf.ethz.ch

@spcl_eth

Record-sequence files

 File is now a vector of fixed-size records

 Can be appended to

 Can be truncated

 Can be updated in place

 Typically no “insert”

 Record size (and perhaps format) fixed at creation time

 Read/write/seek operations take records and record offsets instead of byte

addresses

Compare with

databases!

spcl.inf.ethz.ch

@spcl_eth

Memory-mapped files

 Basic idea: use VM system to cache files

 Map file content into virtual address space

 Set the backing store of region to file

 Can now access the file using load/store

 When memory is paged out

 Updates go back to file instead of swap space

spcl.inf.ethz.ch

@spcl_eth

On-disk Data Structures

spcl.inf.ethz.ch

@spcl_eth

Disk addressing

 Disks have tracks, sectors, spindles, etc.

 And bad sector maps!

 More convenient to use logical block addresses

 Treat disk as compact linear array of usable blocks

 Block size typically 512 bytes

 Ignore geometry except for performance (later!)

 Also abstracts other block storage devices

 Flash drives (load-leveling, etc.)

 Storage-area Networks (SANs)

 Virtual disks (RAM, RAID, etc.)

spcl.inf.ethz.ch

@spcl_eth

Implementation aspects

 Directories and indexes

 Where on the disk is the data for each file?

 Index granularity

 What is the unit of allocation for files?

 Free space maps

 How to allocate more sectors on the disk?

 Locality optimizations

 How to make it go fast in the common case

spcl.inf.ethz.ch

@spcl_eth

File system implementations

FAT FFS NTFS ZFS

Index

structure

Linked list Fixed,

asymmetric

tree

Dynamic tree Dynamic

COW tree

Index

granularity

Block Block Extent Block

Free space

management

FAT array Fixed bitmap Bitmap in file Log-structured

space map

Locality

heuristics

Defragmentation Block groups,

Reserve

space

Best fit,

Defragmentation

Write

anywhere,

Block groups

See book

for details

spcl.inf.ethz.ch

@spcl_eth

FAT-32

spcl.inf.ethz.ch

@spcl_eth

FAT background

 Very old – dates back to 1970s!

 No access control

 Very little metadata

 Limited volume size

 No support for hard links

 BUT still extensively used

 Flash devices, cameras, phones

 Legend: During the development of Windows 3.0, it was customary
to have regular meetings with Bill Gates to brief him on the status of
the project. At one of the reviews, the topic was performance, and Bill
complained, "You guys are spending all this time with your
segment tuning tinkering. I could teach a twelve-year-old to
segment-tune. I want to see some real optimization, not this
segment tuning nonsense. I wrote FAT on an airplane, for
heaven's sake."

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Foo .exe 9

Bar .doc 12

Directory

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Free space:

Linear search

through FAT

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Slow random

access: need to

traverse linked list

for file block

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Very little support for

reliability: lose the FAT

and it’s game over

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Poor locality: files

can end up

fragmented on

disk

spcl.inf.ethz.ch

@spcl_eth

FFS

spcl.inf.ethz.ch

@spcl_eth

Unix Fast File System (FFS)

 First appeared in BSD in the mid 1980’s

 Based on original Unix FS, with performance optimizations

 Basis for Linux ext{2,3} file systems

 Recommended watching:

 Marshall Kirk McKusick “A Brief History of the BSD Fast Filesystem”

Keynote at USENIX FAST’15

(https://www.youtube.com/watch?v=TMjgShRuYbg)

spcl.inf.ethz.ch

@spcl_eth

Inode

array

Metadata
Data block

Data block

Data block

Data block

FFS uses indexed allocation

Inode

Block

pointers
File inode number

from directory

entry

File is represented by an index block or inode

• File metadata

• List of blocks for each part of file

• Directory contains pointers to inodes

spcl.inf.ethz.ch

@spcl_eth

Inode and file size in FFS

 Example:

 Inode is 1 block = 4,096 bytes

 Block addresses = 8 bytes

 Inode metadata = 512 bytes

 Hence:

 (4,096-512) / 8 = 448 block pointers

 448 * 4,096 = 1,792 kB max. file size

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Data block

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Data block

Data block

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Data block

Data block

Data block
…

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Data block

Data block

Data block

Data block

…

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Data block

Data block

Data block

Data block

…

…

Inode: (all blocks 4kB)

Question:

How to extend file size if

there are no more block

pointers in the Inode?

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

…

…

…

Inode: (all blocks 4kB)

4k / 8 = 512

block pointers

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Double indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect

block

indirect

block

indirect

block

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect

block

indirect

block

indirect

block

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect

block

indirect

block

indirect

block

Inode: (all blocks 4kB)

Very small files: fit

data straight into

Inode in place of

pointers

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect

block

indirect

block

indirect

block

Inode: (all blocks 4kB)

Very fast random access for

files which fit in a single INode

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block

pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect

block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect

block

indirect

block

indirect

block

Inode: (all blocks 4kB)

Very large files: tree keeps

random access efficient

spcl.inf.ethz.ch

@spcl_eth

Free space map

 FFS uses a simple bitmap

 Initialized when the file system is created

 One bit per disk (file system) block

 Allocation is reasonably fast

 Scan though lots of bits at a time

 Bitmap can be cached in memory

spcl.inf.ethz.ch

@spcl_eth

Block groups

1. Optimize disk

performance by keeping

together related:

• Files

• Metadata (inodes)

• Free space map

• Directories

spcl.inf.ethz.ch

@spcl_eth

Block groups

2. Use first-fit allocation

within a block group to

improve disk locality

spcl.inf.ethz.ch

@spcl_eth

Block groups

3. Layout and block

groups defined in the

superblock (not shown);

Replicated several times.

spcl.inf.ethz.ch

@spcl_eth

NTFS

spcl.inf.ethz.ch

@spcl_eth

NTFS Master file table

MFT

Std. info Attributes, data, metadata free

MFT record:

Lots of options for

what goes in here

1 kB fixed size

spcl.inf.ethz.ch

@spcl_eth

NTFS small files

 Small file fits into MFT record:

Std. info File data freeFilename

“resident” data

spcl.inf.ethz.ch

@spcl_eth

NTFS small files

 Small file fits into MFT record:

 Hard links (multiple names) stored in MFT:

Std. info File data freeFilename

Std. info File data freeFilename1 Filename2

“resident” data

spcl.inf.ethz.ch

@spcl_eth

NTFS normal files

 MFT holds list of extents:

Std. info
Start,

length
freeFilename

Start,

length

Start,

length

Data (extent 0)

Data (extent 1)

Data (extent 2)

spcl.inf.ethz.ch

@spcl_eth

Too many attributes?

 Attribute list holds list of attribute locations

Std. info Attr. list Filename 2Filename 1

n
a
m

e
n

a
m

e
d

a
ta

Std. info
Start,

length
free

Start,

length

Start,

length

MFT entry

2nd MFT entry

In addition, attributes can also be stored in

extents very large scaling (see book)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

 File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

Question:

Huh?

Where is it

then?

Answer:

First sector of

volume points

to first block of

MFT

spcl.inf.ethz.ch

@spcl_eth

In-memory Data Structures

spcl.inf.ethz.ch

@spcl_eth

Opening a file

 Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inodedirectory structure

User space Kernel Disk

spcl.inf.ethz.ch

@spcl_eth

Reading and writing

 Per-process open file table → index into…

 System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process

open file table

User space Kernel Disk

System

open file table

5

spcl.inf.ethz.ch

@spcl_eth

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual disk,

or RAM disk

spcl.inf.ethz.ch

@spcl_eth

Page cache

 A page cache caches pages rather than disk blocks using virtual

memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the buffer (disk) cache

 This leads to the following figure

spcl.inf.ethz.ch

@spcl_eth

Two layers of caching?

Memory-mapped files
File access with
read()/write()

Page cache

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Unified buffer cache

Memory-mapped files
File access with
read()/write()

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Concurrency

spcl.inf.ethz.ch

@spcl_eth

Concurrency

1. Must ensure that, regardless of concurrent access, file system

integrity is ensured

 Careful design of file system structures

 Internal locking in the file system

 Ordering of writes to disk to provide transactions

2. Provide mechanisms for users to avoid conflicts themselves

 Advisory locks

 Mandatory locks

spcl.inf.ethz.ch

@spcl_eth

Common locking facilities

 Type:

 Advisory: separate locking facility

 Mandatory: write/read operations will fail

 Granularity:

 Whole-file

 Byte ranges (or record ranges)

 Write-protecting executing binaries

spcl.inf.ethz.ch

@spcl_eth

Compare with databases

 Databases have way better notions of:

 Locking between concurrent users

 Durability in the event of crashes

 Records and indexed files have largely disappeared in favor of

databases

 File systems remain much easier to use

 And much, much faster

 As long as it doesn’t matter…

spcl.inf.ethz.ch

@spcl_eth

Recovery

 Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another

storage device (floppy disk, magnetic tape, other magnetic disk,

optical)

 Recover lost file or disk by restoring data from backup

