spel.inf.ethz.ch

ETHzirich |_eth

ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00)
Chapter 7: Filesystem Abstractions:

Exploiting the DRAM rowhammer bug to gain kernel privileges
Posted by Mark Seaborn, sandbox builder and breaker, with contributions by Thomas Dullien, reverse engineer

jest post continues Project Zero's practice of promoting excellence in security research on the Project Zero

Overview

“Rowhammer” is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can
cause bit f djacent rows. We tested a selection of laptops and found that a subset of t xhibited the
lation exploits that use this effect. One exploit uses rowh
an unprivileged userland proce:
able to induce bit flips in pag:
ble, and hence gain read-write acc

induced bit

physical memory.

We don't know for sure how many machines are vulnerable to this attack, or how many existing vulnerable
machines are fixable. Our exploit uses the x86 CLFLUSH instruction to generate many accesses to the underlying
DRAM, but other techniques might work on non-xg6 systems too

ETHzirich

Our Small Quiz

= True or false (raise hand)
= Copy-on-write can be used to communicate between processes
= Copy-on-write leads to faster process creation (with fork)
= Copy-on-write saves memory
= Paging can be seen as a cache for memory on disk
= Paging supports an address space larger than main memory
= |t's always optimal to replace the least recently used (LRU) page
= The “second chance” (clock) algorithm approximates LRU
= Thrashing can bring the system to a complete halt
= Thrashing occurs only when a single process allocates too much memory
= The working set model allows to select processes to suspend
= Paging requires no memory management unit
= Page-faults are handled by the disk
= A priority allocation scheme for memory frames may suffer from priority

We expect our PTE-based exploit could be made to work on other operating systems; it is not inherently Linux- inversion
specific. Causing bit flips in PTEs is just one avenue of exploitation; other avenues for exploiting bit flips can be
practical too. Our other exploit demonstrates this by escaping from the Native Client sandbox.
Highly recc read: http://goc).blogspot.ch/2015/0:
. o inf.ethz.ch
ETHziirich ETHziirich

Filesystem Abstractions

What is the filing system?

= Virtualizes stable storage (disk)
= Between disk (blocks) and programmer abstractions (files)
= Combination of multiplexing and emulation

= Generally part of the core OS
= Other utilities come extra:
= Mostly administrative

= Book: OSPP Sections 11+13 (partly)

ETHziirich

What does the file system need to provide?

Physical characteristic Design implication

High performance High cost of 1/0 access Organize placement:
access data in large,
sequential units
Use caching to reduce 1/O

Support files and directories
with meaningful names

Named data Large capacity, persistent
across crashes, shared

between programs

Device stores many users’ Include access control
data metadata with files

Controlled sharing

Transactions to make set of
updates atomic

Reliable storage Crashes occur during

update

Storage devices fail Redundancy to detect and

correct failures

Flash memory wears out Wear-levelling to prolong life

ETHziirich

What the file system builds on

Application
Library
File system - File _system API)
and implementation
Block cache
—
Block device interface
Device driver — O system
(see later)
1/0, DMA, Interrupts
Physical device

... spcl.inf.ethz.ch o . spcl.inf.ethz.ch
ETHzirich /\,‘7&7’&, W @spcl_eth ETHzirich /\,‘7&7’&, W @spcl_eth

What is a file, to the filing system?

= Some data

= Asize (how many bytes or records)
= One or more names for the file

= Other metadata and attributes

= The type of the file

- = Some structure (how the data is organized)
Filing System Interface = Where on (disk) etc. the data is stored
= Next week’s topic

ETHzirich YYA~ ¥ owcien [EVHzirich

File metadata

= Metadata: important concept!
= Data about an object, not the object itself
* File metadata examples:
= Name
= Location on disk (next lecture)
= Times of creation, last change, last access .
= Ownership, access control rights (perhaps) Namin g
= File type, file structure (later)
= Arbitrary descriptive data (used for searching)

.. - spcl.inf.ethz.ch .
ETHziirich . A}"N/Xa v th ETHziirich

Background Basics: We need to name objects

= Good place to introduce Naming in general

= Naming in computer systems is:
= Complex

* Fundamental Socket clientSocket = new Socket("hostname", 6789);

= Computer systems are composed of many, many layers of
different name systems.
= E.g., virtual memory, file systems, Internet, ...

Create a new object

Give it a name

ETHzirich

spcl.inf.ethz.ch

spclinf.ethz.ch

A

W @spcl_eth

Naming provides indirection

DataOutputStream outToServer = new
DataOutputStream(clientSocket.getOutputStream());

Could be any
socket we have
now

ETHzirich

W @spcl_eth

A

Indirection

= Well-known quote by David Wheeler:

“All problems in computer science can be solved by another level
of indirection”

= Might be less elegantly paraphrased as:

“Any problem in computer science can be recast as a sufficiently
complex naming problem”

ETHziirich
Binding
= The association between a name and a value is called a binding.

= In most cases, the binding isn’t immediately visible
= Most people miss it, or don’t know it exists
= Often conflated with creating the value itself

* Sometimes bindings are explicit, and are objects themselves.

ETHziirich

A General Naming Model

ETHziirich

spel.inf.ethz.ch

Jreasil

A general model of naming
= Designer creates a naming scheme.
1. Name space: what names are valid?
2. Universe of values: what values are valid?
3. Name mapping algorithm: what is the association of names to values?

= Mapping algorithm also known as a resolver

= Requires a context

ETHziirich

General model

Name

mapping
algorithm

Context A

ETHzirich

ETHzirich

spclinf.ethz.ch
~ _ W @spcl_eth

spclinf.ethz.ch
X) W @spcl_eth

Context

= ‘“you”, “here”, “Ueli Maurer” are names that require a context to
be useful

= Any naming scheme must have 2 1 context

= Context may not be stated: always look for it!

Example naming scheme: Virtual address space

= Name space:
= Virtual memory addresses (e.g., 64-bit numbers)
= Universe of values:
= Physical memory addresses (e.g., 64-bit numbers)
= Mapping algorithm:
= Translation via a page table
= Context:
= Page table root

ETHziirich

ETHziirich

Single vs. multiple contexts

* |Pv4 addresses:
= E.g., 129.132.102.54
= Single (global) context: routable from anywhere
= Well, sort of...

= ATM virtual circuit/path identifiers
= E.g., 43:4435
= Local context: only valid on a particular link/port
= Many contexts!

Naming operations

ETHziirich

ETHziirich

Resolution
= Basic operation:
= value «— RESOLVE(name, context)
= In practice, resolution mechanism depends on context:

= value < context. RESOLVE(name)

Resolution example

= Problem:
= How does A determine
B’s MAC address given
its IP address?
= Name space:
= |P addresses
= Universe of values:
= Ethernet MAC addresses
= Mapping algorithm:
= ARP: the Address
Resolution Protocol

A’s IP addr: 10.10.9.41
Ethernet: 00:1f:3b:3a:73:55

g

g
g

8
g

B’s IP addr: 10.10.5.23
Ethernet: 00:1e:c9:74:db:63

. . spclinf.ethz.ch . . spclinf.ethz.ch
ETHzirich W @spcl_eth ETHzirich

X N T A W @spe e

Managing bindings Example

= Typical operations: = Unix file system (more on this later):
$ 1n target new_link
= status — BIND(name, value, context)

" status — UNBIND(name, contexi) = Binds “new_link” to value obtained by resolving “target” in the

current context (working directory)
= May fail according to naming scheme rules $ rm new link

= Unbind may need a value

= Removes binding of “new_link” in cwd

= Actually called unlink at the system call level!

ETHziirich od Al ETHziirich

Enumeration Example enumeration

= Not always available:

= list — ENUMERATE(context) $ IS

= Return all the bindings (or names) in a context

or

C:/> dir

ETH ziirich : TN o W ETHzirich

Comparing names Examples

= Different names, same referent:
— result — COMPARE(namel, name2)

/home/htor/bio. txt

+ But what does this mean? ~/bio.txt
— Are the names themselves the same?
— Are they bound to the same object? = Different names, same content:
— Do they refer to identical copies of one thing?
« All these are different! htor.inf.ethz.ch://home/htor/git/personal/websites/eth/bio.txt

- Requires a definition of “equality” on objects free.inf.ethz.ch://home/htor/public_html/bio.txt

* In general, impossible...

ETHzirich

Pess

spcl.inf.ethz.ch
W @spcl_eth

spclint.ethz.ch
W @spcl_eth

ETHzirich

Naming policy alternatives

Pess

How many values for a name? (in a single context)

= If only one, mapping is injective
= Car number plates
= Virtual memory addresses

= Otherwise: multiple values for a name
= Phone book (people have more than one number)
= DNS names (can return multiple ‘A’ records)

ETHziirich

How many names for a value?

= Only one name for each value
= Names of models of car
= |P protocol identifiers

= Multiple names for the same value
= Phone book again (people sharing a home phone)
= URLs (multiple links to same page)

ETHziirich

Unique identifier spaces and stable bindings

= At most one value bound to a name
= Once created, bindings can never be changed

= Useful: can always determine identity of two objects
= Social security numbers
= Ethernet MAC addresses
E8:92:A4:*:*:* — LG corporation
E8:92:A4:F2:0B:97 — Torsten’s phone’s WiFi interface

ETHziirich

ETHziirich

Types of lookup

Name mapping algorithms

1. Tablelookup
= Simplest scheme
= Analogy: phone book

Faculty

phone

+41 44 632

address T
cAB F 77 U
CH-2082 =

cAB F 73 U
CH-2082 =

+41 44 632
¢ zsa0
+41 44 632
2840

+41 44 632
8920

Tatbul

2. Recursive lookup (pathnames)
3. Multiple lookup (search paths)

ETHzirich

spclint.ethz.ch

W @spcl_eth

spclint.ethz.ch
W @spcl_eth

ETHzirich

Pess

Table lookup: other examples

= Processor registers are named by small integers
= Memory cells are named by numbers
= Ethernet interfaces are named by MAC addresses
= From the network side --- again numbers in the local OS
= Unix accounts are named by small (16bit) numbers (userids)
= Unix userids are named by short strings
= Unix sockets are named by small integers

Pess

Default and explicit contexts,
gualified names

ETHziirich

ETHziirich

Where is the context?

1. Default (implicit): supplied by the resolver
1. Constant: built in to the resolver
2. Variable: from current environment (state)

2. Explicit: supplied by the object
1. Per object
2. Per name (qualified name)

Constant default context

= Universal name space:
e.g., DNS
= Short answer:
= context is the DNS root server
= Longer answer:
= /etc/hosts, plus DNS root server
= Even longer answer:
= /etc/nsswitch.conf, WINS resolver, domain search path, ... ®

spcl.inf.ethz.ch]

ETHziirich

Variable default context

= Example: current working directory

$ pwd
/home/htor/svn
$ 1s

osnet/

$ cd osnet

$ 1s
archive/
assignments/
$ 1s lecture
chapterl/
chapter10/
chapterll/

$

svnadmin/
svn-commit. tmp

lecture/ organisation/
legis/ recitation sessions/

chapter2/
chapter3/
chapter4/

chapter5/ chapter8/
chapter6/ chapter9/
chapter7/ dates.xls

template.pptx

ETHziirich

Explicit per-object context

= Note: context reference is a name!
= Sometimes called a base name
= Examples:

$ ssh -1 htor spcl.inf.ethz.ch
$ dig @8.8.8.8 -q a spcl.inf.ethz.ch
$ dig @google-public-dns-a.google.com -q a spcl

ETHzirich

spcl.inf.ethz.ch
W @spcl_eth

ETHzirich

spclint.ethz.ch
W @spcl_eth

Pess

Explicit per-name context

= Each name comes with its context
= Actually, the name of the context
= (context,name) = qualified name

= Recursive resolution process:
= Resolve context to a context object
= Resolve name relative to resulting context

= Examples:
= htor@inf.ethz.ch

= /var/log/syslog

Pess

Path names, naming networks, recursive
resolution

ETHziirich

Path names

* Recursive resolution = path names

+ Name can be written forwards or backwards
— Examples: /var/log/messages or spcl.inf.ethz.ch

+ Recursion must terminate:
— Either at a fixed, known context reference
« (the root)
— Or at another name, naming a default context
« Example: relative pathnames

+ Syntax gives clue (leading /’)

“wn

* Ortrailing “.” as in spcl.inf.ethz.ch.

ETHziirich

Naming networks

/
usr
home

bin
lib
share

htor

alonso
schuepb \

ETHziirich

“Soft links”

= So far, names resolve to values
= Values may be names in a different naming scheme (usually are...)

= Names can resolve to other names in the same scheme:
= Unix symbolic links (1n -s), Windows “short cuts”
= Forwarding addresses (Die Post vs. USPS, WWW, Email)

ETHziirich

Multiple lookup

ETHzirich

ETHzirich

LI Vi
Sometimes, one context is not enough...

= Multiple lookup, or “search path”
= try several contexts in order
= Union mounts: overlay two or more contexts
= Examples:
= binary directories in Unix
= resolving symbols in link libraries
= Somewhat controversial...

= Note: “search”, but not in the Google sense...

spclinf.ethz.ch
~ _ W @spcl_eth

“Search path” example

$ echo $PATH

/home/htor/bin:/local/bin: /usr/local/bin:/usr/bin:
/bin:/sbin:/usr/sbin:/etc:/usr/bin/X11:/etc/local:
/usr/local/sbin: /home/netos/tools/bin: /usr/bin:
/home/netos/tools/i686-pc-linux-gnu/bin

$ which bash

/bin/bash

$

ETHziirich

Name Discovery

ETHziirich

How to find a name in the first place?

= Many options:
= Well-known.
= Broadcast the name.
= Query (google/bing search)
= Broadcast the query.
= Resolve some other name to a name space
= Introduction
= Physical rendezvous
= Often reduces to another name lookup...

ETHziirich

ETHziirich

W&—v spcl.inf.ethz.ch
% th
X7~ L 4

Bad names

“The Hideous Name”, Rob Pike and P.J. Weinberger, AT&T Bell
Labs

research!ucbvax!@cmu-cs-pt.arpa:@CMU-ITC-
LINUS:dave%CMU-ITC-LINUSQRCMU-CS-PT

(Attributed to the Carnegie-Mellon mailer)

Warning

= Don’t look too closely at names
= Almost everything can be viewed as naming
= This does not mean it should be.

“All problems in computer science can be solved by another level of
indirection...”
“...except for the problem of too many layers of indirection.”

= A naming model is a good servant, but a poor master.

ETHzirich

spcl.inf.ethz.ch
W @spcl_eth

spclint.ethz.ch
W @spcl_eth

ETHzirich

Pess

Conclusion

= Naming is everywhere in Computer Systems
= Name spaces
= Contexts
= Resolution mechanisms
= When trying to understand a system, ask:
= What are the naming schemes?
= What'’s the context?
= What'’s the policy?
= When designing a system, it will help stop you making (some)
silly mistakes!

ress
File system operations

We’ve already seen the file system as a naming scheme.

Directory (name space) operations:
= Link (bind a name)

= Unlink (unbind a name)

* Rename

= List entries

ETHziirich

Acyclic-Graph Directories

= Two different names (aliasing)
dict verbs
= If dict deletes list = dangling pointer
Solutions:
= Backpointers, so we can delete all pointers
Variable size records can be a problem
= Backpointers using a daisy chain organization
= Entry-hold-count solution

= New directory entry type
= Link — another name (pointer) to an existing file
= Resolve the link — follow pointer to locate the file

spell

ETHziirich

General Graph Directory

= How do we guarantee no cycles?
Options:
= Allow only links to files and not directories
= Garbage collection (with cycle collector)
= Check for cycles when every new

course
link is added h

= Restrict directory links to parents dict verbs spell
Eg., “’and“.”
All cycles are therefore trivial

ETHziirich

Access Control

ETHziirich

Protection

= File owner/creator should be able to control:
= what can be done
= by whom

= Types of access
= Read
= Write
= Execute
= Append
= Delete
= List

ETHzirich

spclint.ethz.ch
spel_eth

ETHzirich

A

Access control matrix

For a single file or directory:

Principals
| [alBlclDlElFIGIHIJ .
Read M M ™ M ™
» Write M “ (] (|
Ev Append ™
& Execute M M & ™
Delete ™
List M M

Problem: how to scalably represent this matrix?

Row-wise: ACLs

= Access Control Lists
= For each right, list the principals
= Store with the file
= Good:
= Easy to change rights quickly
= Scales to large numbers of files
= Bad:
= Doesn'’t scale to large numbers of principals

spclint.ethz.ch
~ _ v cl_eth

ETHziirich

Column-wise: Capabilities

= Each principal with aright on afile holds a capability for that
right
= Stored with principal, not object (file)
= Cannot be forged or (sometimes) copied
= Good:
= Very flexible, highly scalable in principals
= Access control resources charged to principal
= Bad:

= Revocation: hard to change access rights
(need to keep track of who has what capabilities)

ETHziirich

POSIX (Unix) Access Control

= Simplifies ACLs: each file identifies 3 principals:

= Owner (a single user)
= Group (a collection of users, defined elsewhere)
= The World (everyone)
= For each principal, file defines 3 rights:
= Read (or traverse, if a directory)
= Write (or create a file, if a directory)
= Execute (or list, if a directory)

ETHziirich

Example

9 htor htor 4096 May 9 13:14 pagai
~ = 1s -1 projekte/Ulvm/1lvm-svn < >

4096 Jan 29 15:58 autoconf
4096 Dec 25 13:20 bindings
4 htor htor 4096 Jan 29
1 htor htor 16401 Dec 25
1 htor htor 2782 Jan 29
1 htor htor 658352 Jan 29

3 htor htor
4 htor htor

cmake
CMakelists. txt
CODE_OWNERS. TXT

- 1 htor htor 10048 Dec 25 13:20 CREDITS.TXT
11 htor htor 4096 Apr Debug
10 htor htor 4096 Jan docs
16 htor htor 4086 Dec examples
4 htor htor 4096 Dec include
18 hter htor 4096 Jan lib
- 1 htor htor 3254 Jan 29 15:57 LICENSE.TXT
1 htor htor 752 Dec LLVMBUI d. txt
1 htor htor 1865 Dec 1lvm.spec.in
1 htor htor 8618 Jan Makefile
1 htor htor 2599 Dec Makefile.common
1 htor htor 12068 Jan Makefile.config.in
1 htor htor 79586 Jan Makefile.rules
4 htor htor 4096 Dec projects
1 htor htor 687 Jan README. txt
3 htor htor 4096 Dec runtime
27 htor htor 4096 Jan test
35 htor htor 4096 Dec tools

11 htor htor
32 htor htor

4096 Jan 29 15:57 unittests
4096 Jan 20 15:57 utils

ETHziirich

Full ACLs

= POSIX now supports full ACLs
= Rarely used, interestingly
= setfacl, getfacl, ...
= Windows has very powerful ACL support
= Arbitrary groups as principals
= Modification rights
= Delegation rights

