
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 5: Memory Management

http://support.apple.com/kb/HT5642 (Jul. 2015)

“Description: The iOS kernel has checks to validate that the user-mode

pointer and length passed to the copyin and copyout functions would not

result in a user-mode process being able to directly access kernel

memory. The checks were not being used if the length was smaller than

one page. This issue was addressed through additional validation of the

arguments to copyin and copyout.”

spcl.inf.ethz.ch

@spcl_eth

Oldskool: signal()

void (*signal(int sig, void (*handler)(int))) (int);

 Unpacking this:

 A handler looks like

void my_handler(int);

 Signal takes two arguments…

An integer (the signal type, e.g., SIGPIPE)

A pointer to a handler function

 … and returns a pointer to a handler function

The previous handler,

 “Special” handler arguments:

 SIG_IGN (ignore), SIG_DFL (default), SIG_ERR (error code)

2

spcl.inf.ethz.ch

@spcl_eth

Unix signal handlers

 Signal handler can be called at any time!

 Executes on the current user stack

 If process is in kernel, may need to retry current system call

 Can also be set to run on a different (alternate) stack

 User process is in undefined state when signal delivered

3

spcl.inf.ethz.ch

@spcl_eth

Implications

 There is very little you can safely do in a signal handler!

 Can’t safely access program global or static variables

 Some system calls are re-entrant, and can be called

 Many C library calls cannot (including _r variants!)

 Can sometimes execute a longjmp if you are careful

 With signal, cannot safely change signal handlers…

 What happens if another signal arrives?

4

spcl.inf.ethz.ch

@spcl_eth

Multiple signals

 If multiple signals of the same type are to be delivered, Unix will

discard all but one.

 If signals of different types are to be delivered, Unix will deliver

them in any order.

 Serious concurrency problem:

How to make sense of this?

5

spcl.inf.ethz.ch

@spcl_eth

A better signal()POSIX sigaction()

#include <signal.h>

int sigaction(int signo,

const struct sigaction *act,

struct sigaction *oldact);

struct sigaction {

void (*sa_handler)(int);

sigset_t sa_mask;

int sa_flags;

void (*sa_sigaction)(int, siginfo_t *, void *);

};

More sophisticated signal
handler (depending on flags)

Signals to be blocked in this
handler (cf., fd_set)

Signal
handler

Previous action
is returned

New action for
signal signo

6

spcl.inf.ethz.ch

@spcl_eth

Signals as upcalls

 Particularly specialized (and complex) form of Upcall

 Kernel RPC to user process

 Other OSes use upcalls much more heavily

 Including Barrelfish

 “Scheduler Activations”: dispatch every process using an upcall instead of

return

 Very important structuring concept for systems!

7

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

 Mutual exclusion on a multicore can be achieved by disabling interrupts

 Test and set can be used to achieve mutual exclusion

 Test and set is more powerful than compare and swap

 The CPU retries load-linked/store conditional instructions after a conflict

 The best spinning time is 2x the context switch time

 Priority inheritance can prevent priority inversion

 The receiver never blocks in asynchronous IPC

 The sender blocks in synchronous IPC if the receiver is not ready

 A pipe file descriptor can be sent to a different process

 Pipes do not guarantee ordering

 Named pipes in Unix behave like files

 A process can catch all signals with handlers

 Signals always trigger actions at the signaled process

 One can implement a user-level tasking library using signals

 Signals of the same type are buffered in the kernel

8

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

 Allocate physical memory to applications

 Protect an application’s memory from others

 Allow applications to share areas of memory

 Data, code, etc.

 Create illusion of a whole address space

 Virtualization of the physical address space

 Create illusion of more memory than you have

 Tomorrow – demand paging

 Book: OSPP Chapter 8

Goals of Memory Management

9

spcl.inf.ethz.ch

@spcl_eth

10http://en.wikipedia.org/wiki/Imagery

spcl.inf.ethz.ch

@spcl_eth

In CASP last semester we saw:

 Assorted uses for virtual memory

 x86 paging

 Page table format

 Translation process

 Translation lookaside buffers (TLBs)

 Interaction with caches

 Performance implications

 For application code, e.g., matrix multiply

11

spcl.inf.ethz.ch

@spcl_eth

 Wider range of memory management hardware

 Base/limit, segmentation

 Inverted page tables, etc.

 How the OS uses the hardware

 Demand paging and swapping

 Page replacement algorithms

 Frame allocation policies

What’s new this semester?

12

spcl.inf.ethz.ch

@spcl_eth

 Physical address: address as seen by the memory unit

 Virtual or Logical address: address issued by the processor

 Loads

 Stores

 Instruction fetches

 Possible others (e.g., TLB fills)…

Terminology

13

spcl.inf.ethz.ch

@spcl_eth

Memory management

1. Allocating physical addresses to applications

2. Managing the name translation of virtual addresses to physical

addresses

3. Performing access control on memory access

 Functions 2 & 3 usually involve the hardware Memory

Management Unit (MMU)

14

spcl.inf.ethz.ch

@spcl_eth

Simple scheme: partitioned memory

15

spcl.inf.ethz.ch

@spcl_eth

 A pair of base and limit registers define the logical address

space

Base and Limit Registers

Operating

System

Process

Process

Process

0x1000000

0x5600ba0

0x8ff0010

0xB000000

0xfffffff

0x0000000

0x5600ba0

0x39ef470

base

limit

16

spcl.inf.ethz.ch

@spcl_eth

 Base address isn’t known until load time

 Options:

1. Compiled code must be completely position-independent, or

2. Relocation Register maps compiled addresses dynamically to

physical addresses

Issue: address binding

17

spcl.inf.ethz.ch

@spcl_eth

Dynamic relocation using a relocation register

Memory

Relocation

register

+CPU

14000
Logical

address

346

Physical

address

14346

MMU

18

spcl.inf.ethz.ch

@spcl_eth

 Main memory usually into two partitions:

 Resident OS, usually in low memory with interrupt vector

 User processes in high memory

 Relocation registers protect user processes from

1. each other

2. changing operating-system code and data

 Registers:

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses

each logical address must be less than the limit register

 MMU maps logical address dynamically

Contiguous allocation

19

spcl.inf.ethz.ch

@spcl_eth

Hardware Support for Relocation and Limit Registers

< + Memory

Relocation

register

Limit

register

CPU

Logical

address

Physical

addressyes

no

trap: addressing error

20

spcl.inf.ethz.ch

@spcl_eth

Base & Limit summary

 Simple to implement (addition & compare)

 Physical memory fragmentation

 Only a single contiguous address range

 How to share data between applications?

 How to share program text (code)?

 How to load code dynamically?

 Total logical address space ≤ physical memory

21

spcl.inf.ethz.ch

@spcl_eth

Segmentation

22

spcl.inf.ethz.ch

@spcl_eth

Segmentation

 Generalize base + limit:

 Physical memory divided into segments

 Logical address = (segment id, offset)

 Segment identifier supplied by:

 Explicit instruction reference

 Explicit processor segment register

 Implicit instruction or process state

23

spcl.inf.ethz.ch

@spcl_eth

User’s View of a Program

shared

library

stack

symbol

table

main

program

heap

logical address

24

spcl.inf.ethz.ch

@spcl_eth

Segmentation Reality

1

2

3

4
0

logical address

physical memory

1

3

2

4

0

25

spcl.inf.ethz.ch

@spcl_eth

Segmentation Hardware

< +

Memory

CPU

Segment

table

Physical

addressyes

no

trap: addressing error

s d

baselimit

26

spcl.inf.ethz.ch

@spcl_eth

0

1

2

3

4

Segmentation Reality

1

2

3

4
0

logical address

physical memory

1

3

2

4

0

300

1000

400

400

1000

1500

5000

3400

4600

1800

baselimit

1500

1800

2800

3400

3800

4600

5000

6000

segment

table

27

spcl.inf.ethz.ch

@spcl_eth

Segmentation Architecture

 Segment table – each entry has:

 base – starting physical address of segment

 limit – length of the segment

 Segment-table base register (STBR)

 Current segment table location in memory

 Segment-table length register (STLR)

 Current size of segment table

segment number s is legal if s < STLR

28

spcl.inf.ethz.ch

@spcl_eth

Segmentation Summary

 Fast context switch

 Simply reload STBR/STLR

 Fast translation

 2 loads, 2 compares

 Segment table can be cached

 Segments can easily be shared

 Segments can appear in multiple segment tables

 Physical layout must still be contiguous

 (External) fragmentation still a problem

29

spcl.inf.ethz.ch

@spcl_eth

Paging

30

spcl.inf.ethz.ch

@spcl_eth

Paging

 Solves contiguous physical memory problem

 Process can always fit if there is available free memory

 Divide physical memory into frames

 Size is power of two, e.g., 4096 bytes

 Divide logical memory into pages of the same size

 For a program of n pages in size:

 Find and allocate n frames

 Load program

 Set up page table to translate logical pages to physical frames

31

spcl.inf.ethz.ch

@spcl_eth

Page table jargon

 Page tables maps VPNs to PFNs

 Page table entry = PTE

 VPN = Virtual Page Number

 Upper bits of virtual or logical address

 PFN = Page Frame Number

 Upper bits of physical or logical address

 Same number of bits (usually).

32

spcl.inf.ethz.ch

@spcl_eth

Recall: P6 Page tables (32bit)

 Pages, page directories, page tables all 4kB

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data page

data

Page
directory

Page table

Logical address:

33

spcl.inf.ethz.ch

@spcl_eth

x86-64 Paging

PM4LE

BR

Page Map

Table

VPN1

9

VPO

12
Virtual address

PPN PPO

40 12

Physical address

VPN2 VPN3 VPN4

9 9 9

PDPE

Page

Directory

Pointer

Table

PDE

Page

Directory

Table

PTE

Page

Table

34

spcl.inf.ethz.ch

@spcl_eth

Problem: performance

 Every logical memory access needs more than two physical

memory accesses

 Load page table entry → PFN

 Load desired location

 Performance  half as fast as with no translation

 Solution: cache page table entries

35

spcl.inf.ethz.ch

@spcl_eth

Translating with the P6 TLB

1. Partition VPN into

TLBT and TLBI.

2. Is the PTE for VPN

cached in set

TLBI?

3. Yes: Check

permissions, build

physical address

4. No: Read PTE (and

PDE if not cached)

from memory and

build physical

address

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address

PDE PTE

...

TLB

miss

TLB

hit

page table translation

PPN PPO

20 12

physical
address

1
2

3

4

partial

TLB hit

36

spcl.inf.ethz.ch

@spcl_eth

 Segments do (still) have uses

 Thread-local state

 Sandboxing (Google NativeClient, etc.)

 Virtual machine monitors (Xen, etc.)

In fact, x86 combines segmentation and paging

CPU
segmentation

unit

paging

unit

physical

memorylogical

address

linear

address

physical

address

37

spcl.inf.ethz.ch

@spcl_eth

Effective Access Time

 Associative Lookup =  time units

 Assume memory cycle time is 1 time unit

 Hit ratio  =

 % time that a page number is found in the TLB;

 Depends on locality and TLB entries (coverage)

Then Effective Access Time:

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 
Assuming single-

level page table.

Exercise: work this

out for the P6 2-level

table

38

spcl.inf.ethz.ch

@spcl_eth

Page Protection

39

spcl.inf.ethz.ch

@spcl_eth

Memory Protection

 Associate protection info with each frame

 Actually no - with the PTE.

 Valid-invalid bit

 “valid”  page mapping is “legal”

 “invalid”  page is not part of address space,

i.e., entry does not exist

 Requesting an “invalid” address  “fault”

 A “page fault”, or….

40

spcl.inf.ethz.ch

@spcl_eth

Remember the P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page address (forces
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

41

spcl.inf.ethz.ch

@spcl_eth

P6 protection bits

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page address (forces
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

P bit can be used to trap

on any access (read or

write)

42

spcl.inf.ethz.ch

@spcl_eth

Protection information

 Protection information typically includes:

 Readable

 Writeable

 Executable (can fetch to i-cache)

 Reference bits used for demand paging

 Observe: same attributes can be (and are) associated with

segments as well

43

spcl.inf.ethz.ch

@spcl_eth

Page sharing

44

spcl.inf.ethz.ch

@spcl_eth

Shared Pages Example

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1

0

data 1

code 1

code 2

code 3

1

2

3

4

5

6

7

8

9

10

11

45

spcl.inf.ethz.ch

@spcl_eth

Shared Pages Example

0

data 1

code 1

code 2

code 3

data 2

1

2

3

4

5

6

7

8

9

10

11

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1

page table

for P2

text 1

text 2

text 3

data 2

Process P2

3

4

6

7

46

spcl.inf.ethz.ch

@spcl_eth

Shared Pages Example

page table

for P3

text 1

text 2

text 3

data 3

Process P3

3

4

6

2

page table

for P2

text 1

text 2

text 3

data 2

Process P2

3

4

6

7

0

data 1

data 3

code 1

code 2

code 3

data 2

1

2

3

4

5

6

7

8

9

10

11

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1

47

spcl.inf.ethz.ch

@spcl_eth

Shared Pages

 Shared code

 One copy of read-only code shared among processes

 Shared code (often) appears in same location in the

logical address space of all processes

 Data segment is not shared, different for each process

 But still mapped at same address (so code can find it)

 Private code and data

 Allows code to be relocated anywhere in address space

48

spcl.inf.ethz.ch

@spcl_eth

Per-process protection

 Protection bits are stored in page table

 Plenty of bits available in PTEs

  independent of frames themselves

 Different processes can share pages

 Each page can have different protection to different processes

 Many uses! E.g., debugging, communication, copy-on-write, etc.

49

spcl.inf.ethz.ch

@spcl_eth

Page Table Structures

50

spcl.inf.ethz.ch

@spcl_eth

Page table structures

 Problem: simple linear page table is too big

 Solutions:

1. Hierarchical page tables

2. Virtual memory page tables

3. Hashed page tables

4. Inverted page tables

51

spcl.inf.ethz.ch

@spcl_eth

Page table structures

 Problem: simple linear page table is too big

 Solutions:

1. Hierarchical page tables

2. Virtual memory page tables (VAX)

3. Hashed page tables

4. Inverted page tables

Saw these last

Semester.

52

spcl.inf.ethz.ch

@spcl_eth

#3 Hashed Page Tables

 VPN is hashed into table

 Hash bucket has chain of logical->physical page mappings

 Hash chain is traversed to find match.

 Can be fast, but can be unpredicable

 Often used for

 Portability

 Software-loaded TLBs (e.g., MIPS)

53

spcl.inf.ethz.ch

@spcl_eth

Hashed Page Table

r d
p dlogical

address

physical

address

hash table

physical

memoryq s • p r • • • •
hash

function

54

spcl.inf.ethz.ch

@spcl_eth

#4 Inverted Page Table

 One system-wide table now maps PFN -> VPN

 One entry for each real page of memory

 Contains VPN, and which process owns the page

 Bounds total size of all page information on machine

 Hashing used to locate an entry efficiently

 Examples: PowerPC, ia64, UltraSPARC

55

spcl.inf.ethz.ch

@spcl_eth

Inverted Page Table Architecture

Physical

memory
pid p d i d

pid p

CPU

logical

address

physical

address

search

page table

i

56

spcl.inf.ethz.ch

@spcl_eth

The need for more bookkeeping

 Most OSes keep their own translation info

 Per-process hierarchical page table (Linux)

 System wide inverted page table (Mach, MacOS)

 Why?

 Portability

 Tracking memory objects

 Software virtual  physical translation

 Physical  virtual translation

57

spcl.inf.ethz.ch

@spcl_eth

TLB shootdown

58

spcl.inf.ethz.ch

@spcl_eth

TLB management

 Recall: the TLB is a cache.

 Machines have many MMUs on many cores

 many TLBs

 Problem: TLBs should be coherent. Why?

 Security problem if mappings change

 E.g., when memory is reused

59

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

60

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only

61

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only



62

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only



Process 0 on core 1 can only continue once shootdown is complete!

63

spcl.inf.ethz.ch

@spcl_eth

Keeping TLBs consistent

1. Hardware TLB coherence

 Integrate TLB mgmt with cache coherence

 Invalidate TLB entry when PTE memory changes

 Rarely implemented

2. Virtual caches

 Required cache flush / invalidate will take care of the TLB

 High context switch cost!
 Most processors use physical caches

3. Software TLB shootdown

 Most common

 OS on one core notifies all other cores - Typically an IPI

 Each core provides local invalidation

4. Hardware shootdown instructions

 Broadcast special address access on the bus

 Interpreted as TLB shootdown rather than cache coherence message

 E.g., PowerPC architecture

64

spcl.inf.ethz.ch

@spcl_eth

Tomorrow: demand paging

65

