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Chapter 5: Memory Management

http://support.apple.com/kb/HT5642 (Jul. 2015)

“Description: The iOS kernel has checks to validate that the user-mode

pointer and length passed to the copyin and copyout functions would not

result in a user-mode process being able to directly access kernel

memory. The checks were not being used if the length was smaller than

one page. This issue was addressed through additional validation of the

arguments to copyin and copyout.”
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Oldskool: signal()

void (*signal(int sig, void (*handler)(int))) (int);

 Unpacking this:

 A handler looks like 

void my_handler(int);

 Signal takes two arguments…

An integer (the signal type, e.g., SIGPIPE)

A pointer to a handler function

 … and returns a pointer to a handler function

The previous handler,

 “Special” handler arguments:

 SIG_IGN (ignore), SIG_DFL (default), SIG_ERR (error code)
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Unix signal handlers

 Signal handler can be called at any time!

 Executes on the current user stack

 If process is in kernel, may need to retry current system call

 Can also be set to run on a different (alternate) stack

 User process is in undefined state when signal delivered
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Implications

 There is very little you can safely do in a signal handler!

 Can’t safely access program global or static variables

 Some system calls are re-entrant, and can be called

 Many C library calls cannot (including  _r variants!)

 Can sometimes execute a longjmp if you are careful

 With signal, cannot safely change signal handlers…

 What happens if another signal arrives?
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Multiple signals

 If multiple signals of the same type are to be delivered, Unix will 

discard all but one.

 If signals of different types are to be delivered, Unix will deliver 

them in any order.

 Serious concurrency problem:

How to make sense of this?
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A better signal()POSIX sigaction()

#include <signal.h>

int sigaction(int signo, 

const struct sigaction *act,

struct sigaction *oldact);

struct sigaction {

void (*sa_handler)(int);

sigset_t sa_mask;

int sa_flags;

void (*sa_sigaction)(int, siginfo_t *, void *);

};

More sophisticated signal 
handler (depending on flags)

Signals to be blocked in this 
handler (cf., fd_set)

Signal 
handler

Previous action 
is returned

New action for 
signal signo
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Signals as upcalls

 Particularly specialized (and complex) form of Upcall

 Kernel RPC to user process

 Other OSes use upcalls much more heavily

 Including Barrelfish

 “Scheduler Activations”: dispatch every process using an upcall instead of 

return

 Very important structuring concept for systems!
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 True or false (raise hand)

 Mutual exclusion on a multicore can be achieved by disabling interrupts

 Test and set can be used to achieve mutual exclusion

 Test and set is more powerful than compare and swap 

 The CPU retries load-linked/store conditional instructions after a conflict

 The best spinning time is 2x the context switch time

 Priority inheritance can prevent priority inversion

 The receiver never blocks in asynchronous IPC

 The sender blocks in synchronous IPC if the receiver is not ready

 A pipe file descriptor can be sent to a different process

 Pipes do not guarantee ordering

 Named pipes in Unix behave like files

 A process can catch all signals with handlers

 Signals always trigger actions at the signaled process

 One can implement a user-level tasking library using signals

 Signals of the same type are buffered in the kernel
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 Allocate physical memory to applications

 Protect an application’s memory from others

 Allow applications to share areas of memory 

 Data, code, etc.

 Create illusion of a whole address space

 Virtualization of the physical address space

 Create illusion of more memory than you have

 Tomorrow – demand paging

 Book: OSPP Chapter 8

Goals of Memory Management
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In CASP last semester we saw:

 Assorted uses for virtual memory

 x86 paging

 Page table format

 Translation process

 Translation lookaside buffers (TLBs)

 Interaction with caches

 Performance implications

 For application code, e.g., matrix multiply
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 Wider range of memory management hardware

 Base/limit, segmentation

 Inverted page tables, etc.

 How the OS uses the hardware

 Demand paging and swapping

 Page replacement algorithms

 Frame allocation policies

What’s new this semester?
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 Physical address: address as seen by the memory unit

 Virtual or Logical address: address issued by the processor 

 Loads

 Stores

 Instruction fetches

 Possible others (e.g., TLB fills)…

Terminology
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Memory management

1. Allocating physical addresses to applications

2. Managing the name translation of virtual addresses to physical 

addresses

3. Performing access control on memory access

 Functions 2 & 3 usually involve the hardware Memory 

Management Unit (MMU)
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Simple scheme: partitioned memory
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 A pair of base and limit registers define the logical address 

space

Base and Limit Registers

Operating

System

Process

Process

Process

0x1000000

0x5600ba0

0x8ff0010

0xB000000

0xfffffff

0x0000000

0x5600ba0

0x39ef470

base

limit
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 Base address isn’t known until load time

 Options:

1. Compiled code must be completely position-independent, or

2. Relocation Register maps compiled addresses dynamically to 

physical addresses

Issue: address binding
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Dynamic relocation using a relocation register

Memory

Relocation 

register

+CPU

14000
Logical

address

346

Physical

address

14346

MMU
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 Main memory usually into two partitions:

 Resident OS, usually in low memory with interrupt vector

 User processes in high memory

 Relocation registers protect user processes from 

1. each other

2. changing operating-system code and data

 Registers:

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses 

each logical address must be less than the limit register 

 MMU maps logical address dynamically

Contiguous allocation
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Hardware Support for Relocation and Limit Registers

< + Memory

Relocation

register

Limit

register

CPU

Logical

address

Physical

addressyes

no

trap: addressing error
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Base & Limit summary

 Simple to implement (addition & compare)

 Physical memory fragmentation

 Only a single contiguous address range

 How to share data between applications?

 How to share program text (code)?

 How to load code dynamically?

 Total logical address space ≤ physical memory
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Segmentation

22

spcl.inf.ethz.ch

@spcl_eth

Segmentation

 Generalize base + limit:

 Physical memory divided into segments

 Logical address = (segment id, offset)

 Segment identifier supplied by:

 Explicit instruction reference 

 Explicit processor segment register

 Implicit instruction or process state 
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User’s View of a Program

shared

library

stack

symbol

table

main 

program

heap

logical address
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Segmentation Reality

1

2

3

4
0

logical address

physical memory

1

3

2

4

0

25

spcl.inf.ethz.ch

@spcl_eth

Segmentation Hardware

< +

Memory

CPU

Segment

table

Physical

addressyes

no

trap: addressing error

s d

baselimit
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0

1

2

3

4

Segmentation Reality

1

2

3

4
0

logical address

physical memory

1

3

2

4

0

300

1000

400

400

1000

1500

5000

3400

4600

1800

baselimit

1500

1800

2800

3400

3800

4600

5000

6000

segment

table

27

spcl.inf.ethz.ch

@spcl_eth

Segmentation Architecture 

 Segment table – each entry has:

 base – starting physical address of segment

 limit – length of the segment

 Segment-table base register (STBR) 

 Current segment table location in memory

 Segment-table length register (STLR) 

 Current size of segment table

segment number s is legal if s < STLR
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Segmentation Summary

 Fast context switch

 Simply reload STBR/STLR

 Fast translation

 2 loads, 2 compares

 Segment table can be cached

 Segments can easily be shared

 Segments can appear in multiple segment tables

 Physical layout must still be contiguous

 (External) fragmentation still a problem
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Paging
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Paging

 Solves contiguous physical memory problem

 Process can always fit if there is available free memory

 Divide physical memory into frames

 Size is power of two, e.g., 4096 bytes

 Divide logical memory into pages of the same size

 For a program of n pages in size:

 Find and allocate n frames

 Load program

 Set up page table to translate logical pages to physical frames
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Page table jargon

 Page tables maps VPNs to PFNs

 Page table entry = PTE

 VPN = Virtual Page Number

 Upper bits of virtual or logical address 

 PFN = Page Frame Number

 Upper bits of physical or logical address

 Same number of bits (usually).
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Recall: P6 Page tables (32bit)

 Pages, page directories, page tables all 4kB

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data page

data

Page 
directory

Page table

Logical address:
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x86-64 Paging

PM4LE

BR

Page Map

Table

VPN1

9

VPO

12
Virtual address

PPN PPO

40 12

Physical address

VPN2 VPN3 VPN4

9 9 9

PDPE

Page 

Directory

Pointer

Table

PDE

Page

Directory

Table

PTE

Page

Table
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Problem: performance

 Every logical memory access needs more than two physical 

memory accesses

 Load page table entry → PFN

 Load desired location

 Performance  half as fast as with no translation

 Solution: cache page table entries
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Translating with the P6 TLB

1. Partition VPN into 

TLBT and TLBI.

2. Is the PTE for VPN 

cached in set 

TLBI?

3. Yes: Check 

permissions, build 

physical address 

4. No: Read PTE (and 

PDE if not cached) 

from memory and 

build physical 

address

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address

PDE PTE

...

TLB

miss

TLB

hit

page table translation

PPN PPO

20 12

physical 
address

1
2

3

4

partial

TLB hit
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 Segments do (still) have uses

 Thread-local state

 Sandboxing (Google NativeClient, etc.)

 Virtual machine monitors (Xen, etc.)

In fact, x86 combines segmentation and paging 

CPU
segmentation

unit

paging 

unit

physical

memorylogical

address

linear

address

physical

address
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Effective Access Time

 Associative Lookup =  time units

 Assume memory cycle time is 1 time unit

 Hit ratio  = 

 % time that a page number is found in the TLB; 

 Depends on locality and TLB entries (coverage)

Then Effective Access Time:

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 
Assuming single-

level page table.

Exercise: work this 

out for the P6 2-level 

table
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Page Protection
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Memory Protection

 Associate protection info with each frame

 Actually no - with the PTE.

 Valid-invalid bit

 “valid”  page mapping is “legal”

 “invalid”  page is not part of address space, 

i.e., entry does not exist

 Requesting an “invalid” address  “fault”

 A “page fault”, or….
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Remember the P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page address (forces 
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes) 

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0
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P6 protection bits

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page address (forces 
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes) 

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

P bit can be used to trap 

on any access (read or 

write)
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Protection information

 Protection information typically includes:

 Readable

 Writeable

 Executable (can fetch to i-cache)

 Reference bits used for demand paging

 Observe: same attributes can be (and are) associated with 

segments as well
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Page sharing
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Shared Pages Example

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1

0

data 1

code 1

code 2

code 3

1

2

3

4

5

6

7

8

9

10

11
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Shared Pages Example

0

data 1

code 1

code 2

code 3

data 2

1

2

3

4

5

6

7

8

9

10

11

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1

page table

for P2

text 1

text 2

text 3

data 2

Process P2

3

4

6

7
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Shared Pages Example

page table

for P3

text 1

text 2

text 3

data 3

Process P3

3

4

6

2

page table

for P2

text 1

text 2

text 3

data 2

Process P2

3

4

6

7

0

data 1

data 3

code 1

code 2

code 3

data 2

1

2

3

4

5

6

7

8

9

10

11

page table

for P1

text 1

text 2

text 3

data 1

Process P1

3

4

6

1
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Shared Pages

 Shared code

 One copy of read-only code shared among processes

 Shared code (often) appears in same location in the 

logical address space of all processes

 Data segment is not shared, different for each process

 But still mapped at same address (so code can find it)

 Private code and data 

 Allows code to be relocated anywhere in address space
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Per-process protection

 Protection bits are stored in page table

 Plenty of bits available in PTEs

  independent of frames themselves

 Different processes can share pages

 Each page can have different protection to different processes

 Many uses!  E.g., debugging, communication, copy-on-write, etc. 
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Page Table Structures
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Page table structures

 Problem: simple linear page table is too big

 Solutions:

1. Hierarchical page tables

2. Virtual memory page tables 

3. Hashed page tables

4. Inverted page tables
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Page table structures

 Problem: simple linear page table is too big

 Solutions:

1. Hierarchical page tables

2. Virtual memory page tables (VAX)

3. Hashed page tables

4. Inverted page tables

Saw these last

Semester.

52

spcl.inf.ethz.ch

@spcl_eth

#3 Hashed Page Tables

 VPN is hashed into table

 Hash bucket has chain of logical->physical page mappings

 Hash chain is traversed to find match.

 Can be fast, but can be unpredicable

 Often used for 

 Portability

 Software-loaded TLBs (e.g., MIPS)
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Hashed Page Table

r d
p dlogical

address

physical

address

hash table

physical

memoryq s • p r • • • •
hash

function
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#4 Inverted Page Table

 One system-wide table now maps PFN -> VPN 

 One entry for each real page of memory

 Contains VPN, and which process owns the page

 Bounds total size of all page information on machine

 Hashing used to locate an entry efficiently

 Examples: PowerPC, ia64, UltraSPARC
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Inverted Page Table Architecture

Physical

memory
pid p d i d

pid p

CPU

logical

address

physical

address

search

page table

i
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The need for more bookkeeping

 Most OSes keep their own translation info

 Per-process hierarchical page table (Linux)

 System wide inverted page table (Mach, MacOS)

 Why?

 Portability

 Tracking memory objects

 Software virtual  physical translation

 Physical  virtual translation
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TLB shootdown
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TLB management

 Recall: the TLB is a cache. 

 Machines have many MMUs on many cores

 many TLBs

 Problem: TLBs should be coherent. Why?

 Security problem if mappings change

 E.g., when memory is reused
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TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1 

TLB:

Core 2 

TLB:

Core 3 

TLB:

60



spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1 

TLB:

Core 2 

TLB:

Core 3 

TLB:

Change 

to read 

only
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TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1 

TLB:

Core 2 

TLB:

Core 3 

TLB:

Change 

to read 

only


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TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1 

TLB:

Core 2 

TLB:

Core 3 

TLB:

Change 

to read 

only



Process 0 on core 1 can only continue once shootdown is complete!
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Keeping TLBs consistent

1. Hardware TLB coherence

 Integrate TLB mgmt with cache coherence

 Invalidate TLB entry when PTE memory changes

 Rarely implemented

2. Virtual caches

 Required cache flush / invalidate will take care of the TLB

 High context switch cost!
 Most processors use physical caches

3. Software TLB shootdown

 Most common

 OS on one core notifies all other cores - Typically an IPI

 Each core provides local invalidation

4. Hardware shootdown instructions

 Broadcast special address access on the bus

 Interpreted as TLB shootdown rather than cache coherence message

 E.g., PowerPC architecture
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Tomorrow: demand paging
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