

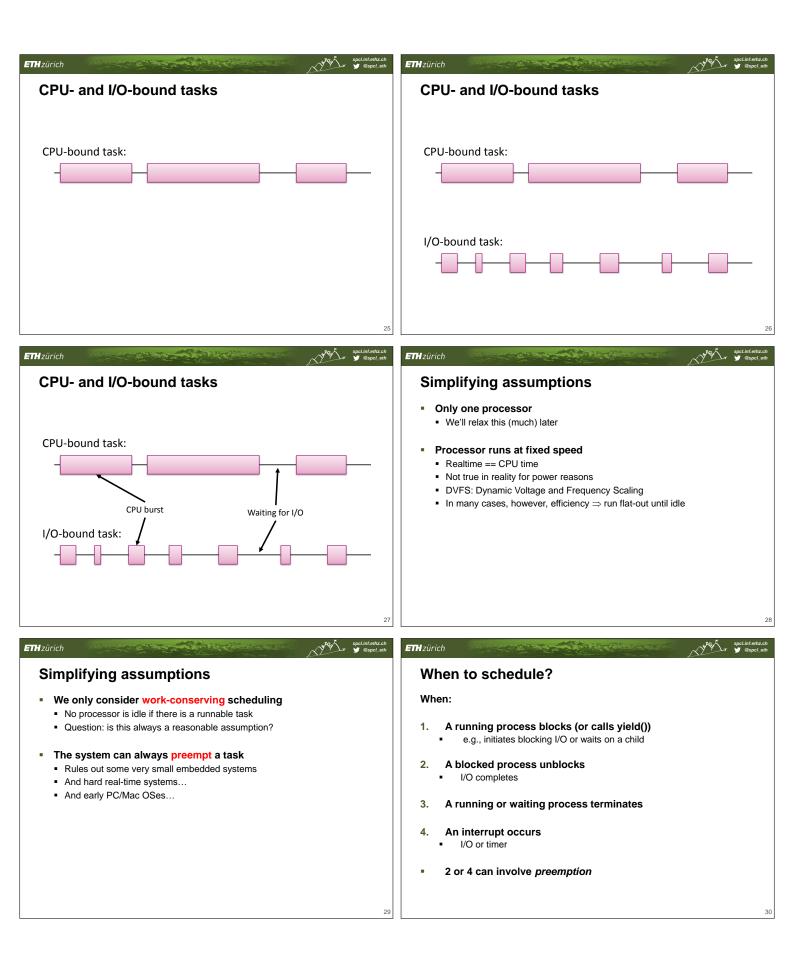



| zürich                                                                                                                                                                   | h<br>h ETHzürich ♀ ♀ ♀ ♀ ♀ ♀ ♀                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Last time                                                                                                                                                                | Scheduling is                                                                                                        |
| <ul> <li>Process concepts and lifecycle</li> <li>Context switching</li> </ul>                                                                                            | Deciding how to allocate a single resource among multiple clients <ul> <li>In what order and for how long</li> </ul> |
| Process creation                                                                                                                                                         | <ul> <li>Usually refers to CPU scheduling</li> </ul>                                                                 |
| Kernel threads                                                                                                                                                           | <ul> <li>Focus of this lecture – we will look at selected systems/research</li> </ul>                                |
| <ul> <li>Kernel architecture</li> <li>System calls in more detail</li> </ul>                                                                                             | <ul> <li>OS also schedules other resources (e.g., disk and network IO)</li> </ul>                                    |
| <ul> <li>User-space threads</li> </ul>                                                                                                                                   |                                                                                                                      |
|                                                                                                                                                                          | CPU scheduling involves deciding:                                                                                    |
| This time                                                                                                                                                                | <ul><li>Which task next on a given CPU?</li><li>For how long should a given task run?</li></ul>                      |
| OSPP Chapter 7                                                                                                                                                           | <ul> <li>On which CPU should a task run?</li> </ul>                                                                  |
|                                                                                                                                                                          | Task: process, thread, domain, dispatcher,                                                                           |
|                                                                                                                                                                          | 13                                                                                                                   |
| zürich                                                                                                                                                                   |                                                                                                                      |
| Scheduling                                                                                                                                                               | Objectives                                                                                                           |
| What metric is to be optimized?                                                                                                                                          | General:                                                                                                             |
| <ul> <li>Fairness (but what does this mean?)</li> </ul>                                                                                                                  | Fairness                                                                                                             |
| <ul> <li>Policy (of some kind)</li> <li>Balance/utilization (keep everything being used)</li> </ul>                                                                      | Enforcement of policy     Balance/utilization                                                                        |
| <ul> <li>Increasingly: Power (or Energy usage)</li> </ul>                                                                                                                |                                                                                                                      |
|                                                                                                                                                                          | <ul> <li>Others depend on workload, or architecture:</li> </ul>                                                      |
| <ul> <li>Usually these are in contradiction</li> </ul>                                                                                                                   | <ul> <li>Batch jobs, interactive, realtime and multimedia</li> </ul>                                                 |
|                                                                                                                                                                          | SMP, SMT, NUMA, multi-node                                                                                           |
|                                                                                                                                                                          |                                                                                                                      |
|                                                                                                                                                                          |                                                                                                                      |
|                                                                                                                                                                          | 15                                                                                                                   |
| zürich                                                                                                                                                                   |                                                                                                                      |
| Challenge: Complexity of scheduling algorithms                                                                                                                           | Challenge: Frequency of scheduling decisions                                                                         |
| <ul> <li>Scheduler needs CPU to decide what to schedule</li> <li>Any time spent in scheduler is "wasted" time</li> <li>Want to minimize overhead of decisions</li> </ul> | <ul> <li>Increased scheduling frequency         ⇒ increasing chance of running something different</li> </ul>        |
| To maximize utilization of CPU                                                                                                                                           | Leads to higher context switching rates,                                                                             |
| <ul> <li>But low overhead is no good if your scheduler picks the<br/>"wrong" things to run!</li> </ul>                                                                   | ⇒ lower throughput                                                                                                   |
|                                                                                                                                                                          | <ul> <li>Flush pipeline, reload register state</li> <li>Maybe flush TLB, caches</li> </ul>                           |
|                                                                                                                                                                          | <ul> <li>Maybe flush i LB, caches</li> <li>Reduces locality (e.g., in cache)</li> </ul>                              |
| $\Rightarrow$ Trade-off between:                                                                                                                                         |                                                                                                                      |
| scheduler complexity/overhead and                                                                                                                                        |                                                                                                                      |
|                                                                                                                                                                          |                                                                                                                      |
| scheduler complexity/overhead and                                                                                                                                        |                                                                                                                      |
| scheduler complexity/overhead and                                                                                                                                        |                                                                                                                      |

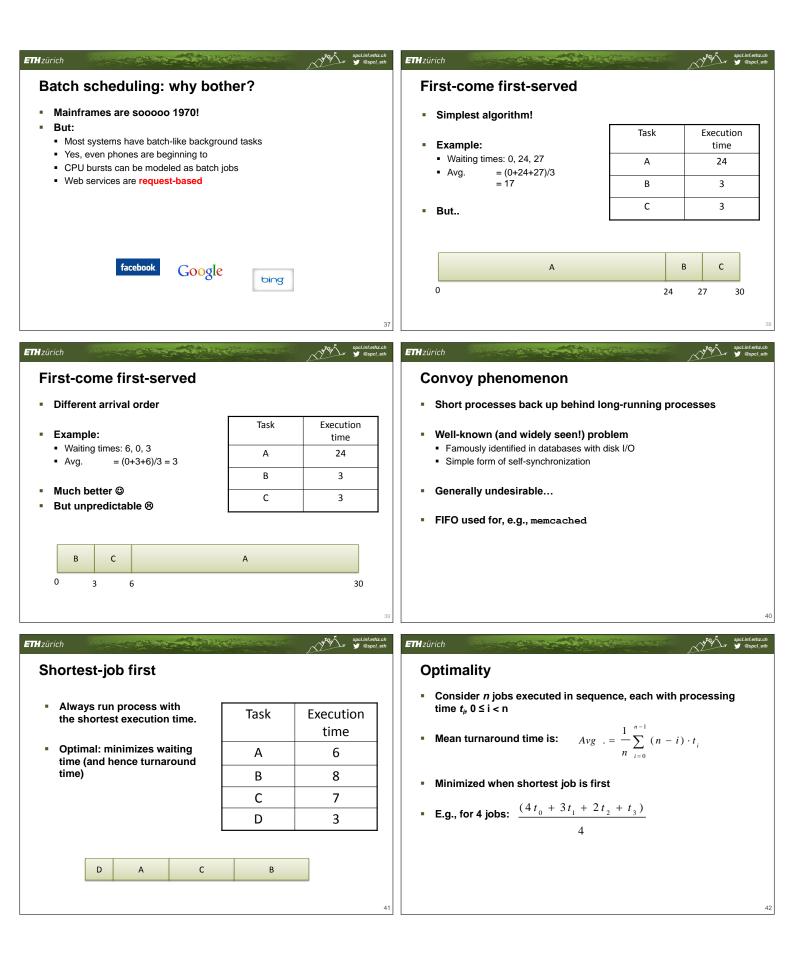
## **Batch workloads**

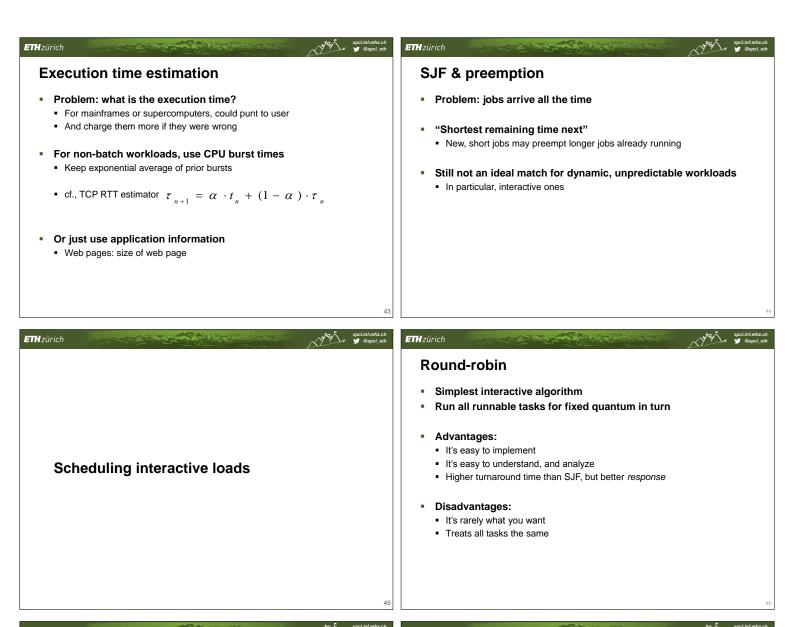
- "Run this job to completion and tell me when you're done"
  - Typical mainframe or supercomputer use-case
  - Used in large clusters of different sorts ...

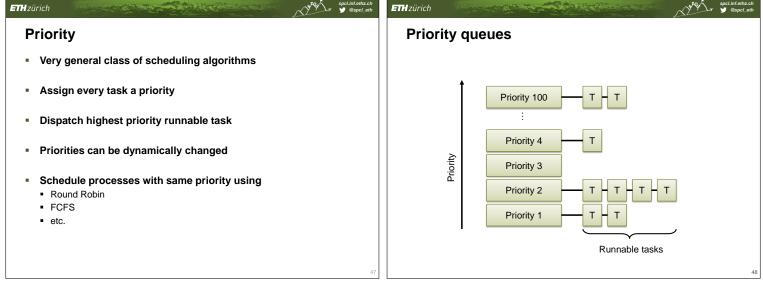
## Goals:


ETHzürich

- Throughput (jobs per hour)Wait time (time to execution)
- Turnaround time (submission to termination)
- Utilization (don't waste resources)





| Izürich                                                                                                                                                                                                                                                                                                                                   | ETH zürich Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadumenten<br>Stadum |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                           | Soft realtime workloads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Wait for external events, and react before the user gets annoyed"</li> <li>Word processing, browsing, fragging, etc.</li> <li>Common for PCs, phones, etc.</li> <li>Besponse time: how quickly does something happen?</li> <li>Proportionality: some things should be quicker</li> </ul>                                         | <ul> <li>"This task must complete in less than 50ms", or</li> <li>"This program must get 10ms CPU every 50ms" <ul> <li>Data acquisition, I/O processing</li> <li>Multimedia applications (audio and video)</li> </ul> </li> <li>Goals: <ul> <li>Deadlines</li> <li>Guarantees</li> <li>Predictability (real time ≠ fast!)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Particular and the plane's control surfaces move correctly in response to the pilot's actions"</li> <li>"Fire the spark plugs in the car's engine at the right time"</li> <li>Mission-critical, extremely time-sensitive control applications</li> <li>Not covered in this course: very different techniques required</li> </ul> | ETHzürich<br>Scheduling assumptions and definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |


19



| ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ch<br>eh ETHzürich y @spel.eft                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preemption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Overhead                                                                                                                                                                                                                                                                                           |
| <ul> <li>Non-preemptive scheduling: <ul> <li>Require each process to explicitly give up the scheduler</li> <li>Start I/O, executes a "yield()" call, etc.</li> </ul> </li> <li>Windows 3.1, older MacOS, some embedded systems</li> </ul> <li>Preemptive scheduling: <ul> <li>Processes dispatched and descheduled without warning</li> <li>Often on a timer interrupt, page fault, etc.</li> <li>The most common case in most OSes</li> <li>Soft-realtime systems are often not!</li> </ul> </li> | <ul> <li>Dispatch latency: <ul> <li>Time taken to dispatch a runnable process</li> </ul> </li> <li>Scheduling cost <ul> <li>2 x (half context switch) + (scheduling time)</li> </ul> </li> <li>Time slice allocated to a process should be significantly more than scheduling overhead!</li> </ul> |
| ETH zürich Spelintein:<br>→ Sapel                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |
| Overhead example (from Tanenbaum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Overhead example (from Tanenbaum)                                                                                                                                                                                                                                                                  |
| <ul> <li>Suppose process switch time is 1ms</li> <li>Run each process for 4ms</li> <li>What is the overhead?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Suppose process switch time is 1ms</li> <li>Run each process for 4ms<br/>⇒ 20% of system time spent in scheduler ⊗</li> <li>Run each process for 100ms<br/>50 jobs ⇒ maximum response time?</li> </ul>                                                                                    |
| ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eh ett zürich 🥩 😵 🕬                                                                                                                                                                                                                                                                                |
| <ul> <li>Overhead example (from Tanenbaum)</li> <li>Suppose process switch time is 1ms</li> <li>Run each process for 4ms<br/>⇒ 20% of system time spent in scheduler ®</li> <li>Run each process for 100ms<br/>50 jobs ⇒ response time up to 5 seconds ®</li> <li>Tradeoff: response time vs. scheduling overhead</li> </ul>                                                                                                                                                                       | Batch-oriented scheduling                                                                                                                                                                                                                                                                          |







| Hzürich yeguinteitizch yeguinteitizch yeguinteitizch yeguinteitizch yeguinteitizch yeguinteitizch yeguinteitizch                                                                                                                                                                                                                                                                           | ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-level queues                                                                                                                                                                                                                                                                                                                                                                         | Starvation                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Can schedule different priority levels differently:</li> <li>Interactive, high-priority: round robin</li> <li>Batch, background, low priority, real time: FCFS</li> <li>Ideally generalizes to hierarchical scheduling</li> </ul>                                                                                                                                                 | <ul> <li>Strict priority schemes do not guarantee progress for all tasks</li> <li>Solution: Ageing <ul> <li>Tasks which have waited a long time are gradually increased in priority</li> <li>Eventually, any starving task ends up with the highest priority</li> <li>Reset priority when quantum is used up</li> </ul> </li> </ul>                                                                                                                             |
| 43<br>Hzürich Spelintethzeh<br>¥ Speleth                                                                                                                                                                                                                                                                                                                                                   | ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Multilevel Feedback Queues                                                                                                                                                                                                                                                                                                                                                                 | Example: Linux o(1) scheduler                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Idea: penalize CPU-bound tasks to benefit I/O bound tasks</li> <li>Reduce priority for processes which consume their entire quantum</li> <li>Eventually, re-promote process</li> <li>I/O bound tasks tend to block before using their quantum ⇒ remain at high priority</li> <li>Very general: any scheduling algorithm can reduce to this (problem is implementation)</li> </ul> | <ul> <li>140 level Multilevel Feedback Queue</li> <li>0-99 (high priority):<br/>static, fixed, "realtime"<br/>FCFS or RR</li> <li>100-139: User tasks, dynamic<br/>Round-robin within a priority level<br/>Priority ageing for interactive (I/O intensive) tasks</li> <li>Complexity of scheduling is independent of no. tasks</li> <li>Two arrays of queues: "runnable" &amp; "waiting"</li> <li>When no more task in "runnable" array, swap arrays</li> </ul> |
| Hzürich Speliticethisch<br>Example: Linux "completely fair scheduler"                                                                                                                                                                                                                                                                                                                      | Problems with UNIX Scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Task's priority = how little progress it has made <ul> <li>Adjusted by fudge factors over time</li> <li>Get "bonus" if a task yields early (his time is distributed evenly)</li> </ul> </li> <li>Implementation uses Red-Black tree <ul> <li>Sorted list of tasks</li> <li>Operations now O(log n), but this is fast</li> </ul> </li> </ul>                                       | <ul> <li>UNIX conflates protection domain and resource principal</li> <li>Priorities and scheduling decisions are per-process (thread)</li> <li>However, may want to allocate resources across processes, or separate resource allocation within a process</li> <li>E.g., web server structure         <i>Multi-process Multi-threaded</i></li> </ul>                                                                                                           |
| <ul> <li>Essentially, this is the old idea of "fair queuing" from packet networks</li> <li>Also called "generalized processor scheduling"</li> <li>Ensures guaranteed service rate for all processes</li> <li>CFS does not, however, expose (or maintain) the guarantees</li> </ul>                                                                                                        | <ul> <li>Event-driven</li> <li>If I run more compiler jobs than you, I get more CPU time</li> <li>In-kernel processing is accounted to nobody</li> </ul>                                                                                                                                                                                                                                                                                                        |

| Hzürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETH zürich Section Se |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resource Containers [Banga et al., 1999]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>New OS abstraction for explicit resource management, separate from process structure</li> <li>Operations to create/destroy, manage hierarchy, and associate threads or sockets with containers</li> <li>Independent of scheduling algorithms used</li> <li>All kernel operations and resource usage accounted to a resource container</li> <li>Explicit and fine-grained control over resource usage</li> <li>Protects against some forms of DoS attack</li> <li>Most obvious modern form: virtual machines, containers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Real Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| THzürich y spelintethzeh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Real-time scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Example: multimedia scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Problem: giving real time-based guarantees to tasks</li> <li>Tasks can appear at any time</li> <li>Tasks can have deadlines</li> <li>Execution time is generally known</li> <li>Tasks can be periodic or aperiodic</li> <li>Must be possible to reject tasks which are unschedulable, or which would result in no feasible schedule</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Starting moment Deadline<br>for A1, B1, C1 for A1 Deadline for B1<br>$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to S spci infatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 57<br>Hrzürich مراجع معلم المعلم ا<br>معلم المعلم الم | ETH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| TH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ETH zürich                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guaranteeing processor rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |
| <ul> <li>E.g., you can use EDF to guarantee a rate of progress for a long-<br/>running task</li> <li>Break task into periodic jobs, period <i>p</i> and time <i>s</i>.</li> <li>A task arrives at start of a period</li> <li>Deadline is the end of the period</li> <li>Provides a reservation scheduler which:         <ul> <li>Ensures task gets <i>s</i> seconds of time every <i>p</i> seconds</li> <li>Approximates weighted fair queuing</li> </ul> </li> <li>Algorithm is regularly rediscovered</li> </ul> | Multiprocessor Scheduling                                                                                                                                 |
| EnHzürich<br>Challenge 1: sequential programs on multiprocessors                                                                                                                                                                                                                                                                                                                                                                                                                                                   | st<br>ETHzürich<br>It's much harder                                                                                                                       |
| • Queuing theory $\Rightarrow$ straightforward, although:                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Overhead of locking and sharing queue</li> </ul>                                                                                                 |
| <ul><li>More complex than uniprocessor scheduling</li><li>Harder to analyze</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Classic case of scaling bottleneck in OS design</li> <li>Solution: per-processor scheduling queues</li> </ul>                                    |
| Core 0<br>Core 1<br>Core 2<br>Task queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Core 0<br>Core 1<br>Core 2<br>Core 2<br>Core 3                                                                                                            |
| STH zürich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ETH zürich                                                                                                                                                |
| It's much harder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Challenge 2: parallel applications                                                                                                                        |
| <ul> <li>Threads allocated arbitrarily to cores</li> <li>⇒ tend to move between cores</li> <li>⇒ tend to move between caches</li> <li>⇒ really bad locality and hence performance</li> </ul>                                                                                                                                                                                                                                                                                                                       | <ul> <li>Global barriers in parallel applications ⇒</li> <li>One slow thread has huge effect on performance</li> <li>Corollary of Amdahl's Law</li> </ul> |
| <ul> <li>Solution: affinity scheduling</li> <li>Keep each thread on a core most of the time</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | Multiple threads would benefit from cache sharing                                                                                                         |
| <ul> <li>Reep each intead on a core most of the time</li> <li>Periodically rebalance across cores</li> <li>Note: this is <i>non-work-conserving!</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Different applications pollute each others' caches</li> </ul>                                                                                    |
| <ul> <li>Alternative: hierarchical scheduling (Linux)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Leads to concept of "co-scheduling"</li> <li>Try to schedule all threads of an application together</li> </ul>                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Critically dependent on synchronization concepts</li> </ul>                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |

| ETHzürich                                                                                                                                                                                      | y <sup>2</sup> g∮, y <sup>2</sup> ggel eth ETH zürich spelintethzeh<br>y <sup>2</sup> g∮, y @spel eth<br>y <sup>2</sup> ggel eth                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multicore scheduling                                                                                                                                                                           | Little's Law                                                                                                                                                                                                     |
| <ul> <li>Multiprocessor scheduling is two-dimensional</li> <li>When to schedule a task?</li> <li>Where (which core) to schedule on?</li> </ul>                                                 | <ul> <li>Assume, in a train station:</li> <li>100 people arrive per minute</li> <li>Each person spends 15 minutes in the station</li> <li>How big does the station have to be (house how many people)</li> </ul> |
| <ul> <li>General problem is NP hard ®</li> </ul>                                                                                                                                               | <ul> <li>Little's law: "The average number of active tasks in a system is<br/>equal to the average arrival rate multiplied by the average time a</li> </ul>                                                      |
| <ul> <li>But it's worse than that:</li> <li>Don't want a process holding a lock to sleep         ⇒ Might be other running tasks spinning on it     <li>Not all cores are equal</li> </li></ul> | task spends in a system"                                                                                                                                                                                         |
| <ul> <li>In general, this is a wide-open research problem</li> </ul>                                                                                                                           |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                | 67 68                                                                                                                                                                                                            |