
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 3: Scheduling

Source: slashdot, Feb. 2014

spcl.inf.ethz.ch

@spcl_eth

Many-to-one threads

 Early “thread libraries”

 Green threads (original Java VM)

 GNU Portable Threads

 Standard student exercise: implement them!

 Sometimes called “pure user-level threads”

 aka. lightweight threads, tasks (differences in control)

 No kernel support required

 Also (confusingly) “Lightweight Processes”

2

spcl.inf.ethz.ch

@spcl_eth

Many-to-one threads

Kernel

User

CPU 0 CPU 1

3

spcl.inf.ethz.ch

@spcl_eth

Address space layout for user level threads

Stack

Text

Data

BSS

Text

BSS

Thread 1 stack

Thread 2 stack

Thread 3 stack

Data

Just

allocate

on the

heap

4

BSS

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

 Every user thread is/has a kernel thread.

 Equivalent to:

 multiple processes sharing an address space

 Except that “process” now refers to a group of threads

 Most modern OS threads packages:

 Linux, Solaris, Windows XP, MacOSX, etc.

5

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

Kernel

User

CPU 0 CPU 1

6

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

Stack

Text

Data

BSS

Text

Data

BSS

Thread 1 stack

Thread 2 stack

Thread 3 stack

7

spcl.inf.ethz.ch

@spcl_eth

Comparison

User-level threads

 Cheap to create and

destroy

 Fast to context switch

 Can block entire process

 Not just on system calls

One-to-one threads

 Memory usage (kernel

stack)

 Slow to switch

 Easier to schedule

 Nicely handles blocking

8

spcl.inf.ethz.ch

@spcl_eth

Many-to-many threads

 Multiplex user-level threads over several kernel-level threads

 Only way to go for a multiprocessor

 I.e., pretty much everything these days

 Can “pin” user thread to kernel thread for

performance/predictability

 Thread migration costs are “interesting”…

9

spcl.inf.ethz.ch

@spcl_eth

Many-to-many threads

Kernel

User

CPU 0 CPU 1

10

spcl.inf.ethz.ch

@spcl_eth

 I try to indicate book chapters

 But this will not be complete (no book covers 100%)

 So consider it a rough approximation

 Last lecture OSPP Sections 3.1 and 4.1

 Lecture recording

 http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L

 Content of the OS part did not change

 Please let me know if you find the quick quiz silly!

11

Administrivia

http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

 A process has a virtual CPU

 A thread has a virtual CPU

 A thread has a private set of open files

 A process is a resource container

 A context switch can be caused by a thread

 When a process calls a blocking I/O, it is put into runnable state

 A zombie is a dead process waiting for its parent

 Simple user-level threads run efficiently on multiprocessors

 A device can trigger a system call

 A device can trigger an upcall

 Unix fork() starts a new program

 Windows CreateProcess starts a new program

 A buggy process can overwrite the stack of another process

 User-level threads can context switch without a syscall

 The scheduler always runs in a kernel thread

A Small Quiz

12

spcl.inf.ethz.ch

@spcl_eth

Last time

 Process concepts and lifecycle

 Context switching

 Process creation

 Kernel threads

 Kernel architecture

 System calls in more detail

 User-space threads

 This time

 OSPP Chapter 7

13

spcl.inf.ethz.ch

@spcl_eth

Scheduling is…

Deciding how to allocate a single resource among multiple clients

 In what order and for how long

 Usually refers to CPU scheduling

 Focus of this lecture – we will look at selected systems/research

 OS also schedules other resources (e.g., disk and network IO)

 CPU scheduling involves deciding:

 Which task next on a given CPU?

 For how long should a given task run?

 On which CPU should a task run?

Task: process, thread, domain, dispatcher, …

14

spcl.inf.ethz.ch

@spcl_eth

Scheduling

 What metric is to be optimized?

– Fairness (but what does this mean?)

– Policy (of some kind)

– Balance/utilization (keep everything being used)

– Increasingly: Power (or Energy usage)

 Usually these are in contradiction…

15

spcl.inf.ethz.ch

@spcl_eth

 General:

 Fairness

 Enforcement of policy

 Balance/utilization

 Others depend on workload, or architecture:

 Batch jobs, interactive, realtime and multimedia

 SMP, SMT, NUMA, multi-node

Objectives

16

spcl.inf.ethz.ch

@spcl_eth

Challenge: Complexity of scheduling algorithms

 Scheduler needs CPU to decide what to schedule

 Any time spent in scheduler is “wasted” time

 Want to minimize overhead of decisions

To maximize utilization of CPU

 But low overhead is no good if your scheduler picks the

“wrong” things to run!

 Trade-off between:

scheduler complexity/overhead and

quality of resulting schedule

17

spcl.inf.ethz.ch

@spcl_eth

Challenge: Frequency of scheduling decisions

 Increased scheduling frequency

 increasing chance of running something different

Leads to higher context switching rates,

 lower throughput

 Flush pipeline, reload register state

 Maybe flush TLB, caches

 Reduces locality (e.g., in cache)

18

spcl.inf.ethz.ch

@spcl_eth

Batch workloads

• “Run this job to completion and tell me when you’re done”

– Typical mainframe or supercomputer use-case

– Used in large clusters of different sorts …

• Goals:

– Throughput (jobs per hour)

– Wait time (time to execution)

– Turnaround time (submission to termination)

– Utilization (don’t waste resources)

19

spcl.inf.ethz.ch

@spcl_eth

Example: Supercomputer batch system

20more: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/

spcl.inf.ethz.ch

@spcl_eth

Interactive workloads

 “Wait for external events, and react before the user gets

annoyed”

 Word processing, browsing, fragging, etc.

 Common for PCs, phones, etc.

 Goals:

 Response time: how quickly does something happen?

 Proportionality: some things should be quicker

21

spcl.inf.ethz.ch

@spcl_eth

Soft realtime workloads

 “This task must complete in less than 50ms”, or

 “This program must get 10ms CPU every 50ms”

– Data acquisition, I/O processing

– Multimedia applications (audio and video)

 Goals:

– Deadlines

– Guarantees

– Predictability (real time ≠ fast!)

22

spcl.inf.ethz.ch

@spcl_eth

Hard realtime workloads

 “Ensure the plane’s control surfaces move correctly in response
to the pilot’s actions”

 “Fire the spark plugs in the car’s engine at the right time”

 Mission-critical, extremely time-sensitive control applications

 Not covered in this course: very different techniques required…

23

spcl.inf.ethz.ch

@spcl_eth

Scheduling assumptions and definitions

24

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU-bound task:

25

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU-bound task:

I/O-bound task:

26

spcl.inf.ethz.ch

@spcl_eth

CPU- and I/O-bound tasks

CPU burst Waiting for I/O

CPU-bound task:

I/O-bound task:

27

spcl.inf.ethz.ch

@spcl_eth

Simplifying assumptions

 Only one processor

 We’ll relax this (much) later

 Processor runs at fixed speed

 Realtime == CPU time

 Not true in reality for power reasons

 DVFS: Dynamic Voltage and Frequency Scaling

 In many cases, however, efficiency run flat-out until idle

28

spcl.inf.ethz.ch

@spcl_eth

Simplifying assumptions

 We only consider work-conserving scheduling

 No processor is idle if there is a runnable task

 Question: is this always a reasonable assumption?

 The system can always preempt a task

 Rules out some very small embedded systems

 And hard real-time systems…

 And early PC/Mac OSes…

29

spcl.inf.ethz.ch

@spcl_eth

When to schedule?

When:

1. A running process blocks (or calls yield())

 e.g., initiates blocking I/O or waits on a child

2. A blocked process unblocks

 I/O completes

3. A running or waiting process terminates

4. An interrupt occurs

 I/O or timer

 2 or 4 can involve preemption

30

spcl.inf.ethz.ch

@spcl_eth

Preemption

• Non-preemptive scheduling:

– Require each process to explicitly give up the scheduler

• Start I/O, executes a “yield()” call, etc.

– Windows 3.1, older MacOS, some embedded systems

• Preemptive scheduling:

– Processes dispatched and descheduled without warning

• Often on a timer interrupt, page fault, etc.

– The most common case in most OSes

– Soft-realtime systems are usually preemptive

– Hard-realtime systems are often not!

31

spcl.inf.ethz.ch

@spcl_eth

Overhead

 Dispatch latency:

 Time taken to dispatch a runnable process

 Scheduling cost

= 2 x (half context switch) + (scheduling time)

 Time slice allocated to a process should be significantly more

than scheduling overhead!

32

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

 Suppose process switch time is 1ms

 Run each process for 4ms

 What is the overhead?

33

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

 Suppose process switch time is 1ms

 Run each process for 4ms

 20% of system time spent in scheduler

 Run each process for 100ms

50 jobs maximum response time?

34

spcl.inf.ethz.ch

@spcl_eth

Overhead example (from Tanenbaum)

 Suppose process switch time is 1ms

 Run each process for 4ms

 20% of system time spent in scheduler

 Run each process for 100ms

50 jobs response time up to 5 seconds

 Tradeoff: response time vs. scheduling overhead

35

spcl.inf.ethz.ch

@spcl_eth

Batch-oriented scheduling

36

spcl.inf.ethz.ch

@spcl_eth

Batch scheduling: why bother?

 Mainframes are sooooo 1970!

 But:

 Most systems have batch-like background tasks

 Yes, even phones are beginning to

 CPU bursts can be modeled as batch jobs

 Web services are request-based

37

spcl.inf.ethz.ch

@spcl_eth

Task Execution
time

A 24

B 3

C 3

First-come first-served

 Simplest algorithm!

 Example:

 Waiting times: 0, 24, 27

 Avg. = (0+24+27)/3

= 17

 But..

B CA

0 24 27 30

38

spcl.inf.ethz.ch

@spcl_eth

 Different arrival order

 Example:

 Waiting times: 6, 0, 3

 Avg. = (0+3+6)/3 = 3

 Much better

 But unpredictable

First-come first-served

B C A

0 3 6 30

Task Execution
time

A 24

B 3

C 3

39

spcl.inf.ethz.ch

@spcl_eth

Convoy phenomenon

 Short processes back up behind long-running processes

 Well-known (and widely seen!) problem

 Famously identified in databases with disk I/O

 Simple form of self-synchronization

 Generally undesirable…

 FIFO used for, e.g., memcached

40

spcl.inf.ethz.ch

@spcl_eth

 Always run process with

the shortest execution time.

 Optimal: minimizes waiting

time (and hence turnaround

time)

Task Execution
time

A 6

B 8

C 7

D 3

D A C B

41

Shortest-job first

spcl.inf.ethz.ch

@spcl_eth

Optimality

 Consider n jobs executed in sequence, each with processing

time ti, 0 ≤ i < n

 Mean turnaround time is:

 Minimized when shortest job is first

 E.g., for 4 jobs:

1

0

)(
1

.

n

i

i
tin

n
Avg

4

)234(
3210

tttt

42

spcl.inf.ethz.ch

@spcl_eth

Execution time estimation

 Problem: what is the execution time?

 For mainframes or supercomputers, could punt to user

 And charge them more if they were wrong

 For non-batch workloads, use CPU burst times

 Keep exponential average of prior bursts

 cf., TCP RTT estimator

 Or just use application information

 Web pages: size of web page

nnn
t

)1(

1

43

spcl.inf.ethz.ch

@spcl_eth

 Problem: jobs arrive all the time

 “Shortest remaining time next”

 New, short jobs may preempt longer jobs already running

 Still not an ideal match for dynamic, unpredictable workloads

 In particular, interactive ones

SJF & preemption

44

spcl.inf.ethz.ch

@spcl_eth

Scheduling interactive loads

45

spcl.inf.ethz.ch

@spcl_eth

 Simplest interactive algorithm

 Run all runnable tasks for fixed quantum in turn

 Advantages:

 It’s easy to implement

 It’s easy to understand, and analyze

 Higher turnaround time than SJF, but better response

 Disadvantages:

 It’s rarely what you want

 Treats all tasks the same

Round-robin

46

spcl.inf.ethz.ch

@spcl_eth

 Very general class of scheduling algorithms

 Assign every task a priority

 Dispatch highest priority runnable task

 Priorities can be dynamically changed

 Schedule processes with same priority using

 Round Robin

 FCFS

 etc.

Priority

47

spcl.inf.ethz.ch

@spcl_eth

Priority queues

48

Priority 100

Priority 4

Priority 3

Priority 2

Priority 1 T

T

T T

T T T

T

T

Runnable tasks

P
ri
o
ri
ty

…

spcl.inf.ethz.ch

@spcl_eth

 Can schedule different priority levels differently:

 Interactive, high-priority: round robin

 Batch, background, low priority, real time: FCFS

 Ideally generalizes to hierarchical scheduling

Multi-level queues

49

spcl.inf.ethz.ch

@spcl_eth

Starvation

 Strict priority schemes do not guarantee progress for all tasks

 Solution: Ageing

 Tasks which have waited a long time are gradually increased in priority

 Eventually, any starving task ends up with the highest priority

 Reset priority when quantum is used up

50

spcl.inf.ethz.ch

@spcl_eth

 Idea: penalize CPU-bound tasks to benefit I/O bound tasks

 Reduce priority for processes which consume their entire quantum

 Eventually, re-promote process

 I/O bound tasks tend to block before using their quantum remain at high
priority

 Very general: any scheduling algorithm can reduce to this
(problem is implementation)

Multilevel Feedback Queues

51

spcl.inf.ethz.ch

@spcl_eth

Example: Linux o(1) scheduler

 140 level Multilevel Feedback Queue

 0-99 (high priority):

static, fixed, “realtime”

FCFS or RR

 100-139: User tasks, dynamic

Round-robin within a priority level

Priority ageing for interactive (I/O intensive) tasks

 Complexity of scheduling is independent of no. tasks

 Two arrays of queues: “runnable” & “waiting”

 When no more task in “runnable” array, swap arrays

52

spcl.inf.ethz.ch

@spcl_eth

Example: Linux “completely fair scheduler”

• Task’s priority = how little progress it has made

– Adjusted by fudge factors over time

– Get “bonus” if a task yields early (his time is distributed evenly)

• Implementation uses Red-Black tree

– Sorted list of tasks

– Operations now O(log n), but this is fast

• Essentially, this is the old idea of “fair queuing” from packet

networks

– Also called “generalized processor scheduling”

– Ensures guaranteed service rate for all processes

– CFS does not, however, expose (or maintain) the guarantees

53

spcl.inf.ethz.ch

@spcl_eth

Problems with UNIX Scheduling

 UNIX conflates protection domain and resource principal

 Priorities and scheduling decisions are per-process (thread)

 However, may want to allocate resources across processes, or

separate resource allocation within a process

 E.g., web server structure

Multi-process

Multi-threaded

Event-driven

 If I run more compiler jobs than you, I get more CPU time

 In-kernel processing is accounted to nobody

54

spcl.inf.ethz.ch

@spcl_eth

Resource Containers [Banga et al., 1999]

New OS abstraction for explicit resource management, separate

from process structure

 Operations to create/destroy, manage hierarchy, and associate

threads or sockets with containers

 Independent of scheduling algorithms used

 All kernel operations and resource usage accounted to a

resource container

 Explicit and fine-grained control over resource usage

 Protects against some forms of DoS attack

 Most obvious modern form: virtual machines, containers

55

spcl.inf.ethz.ch

@spcl_eth

Real Time

56

spcl.inf.ethz.ch

@spcl_eth

Real-time scheduling

 Problem: giving real time-based guarantees to tasks

 Tasks can appear at any time

 Tasks can have deadlines

 Execution time is generally known

 Tasks can be periodic or aperiodic

 Must be possible to reject tasks which are unschedulable, or
which would result in no feasible schedule

57

spcl.inf.ethz.ch

@spcl_eth

Example: multimedia scheduling

58

spcl.inf.ethz.ch

@spcl_eth

Rate-monotonic scheduling

 Schedule periodic tasks by always running task with shortest
period first.
 Static (offline) scheduling algorithm

 Suppose:
 m tasks

 Ci is the execution time of i’th task

 Pi is the period of i’th task

 Then RMS will find a feasible schedule if:

 (Proof is beyond scope of this course)

)12(
1

1

m

m

i i

i
m

P

C

59

spcl.inf.ethz.ch

@spcl_eth

Earliest deadline first

 Schedule task with earliest deadline first (duh..)

 Dynamic, online.

 Tasks don’t actually have to be periodic…

 More complex - O(n) – for scheduling decisions

 EDF will find a feasible schedule if:

 Which is very handy. Assuming zero context switch time…

1

1

m

i i

i

P

C

60

spcl.inf.ethz.ch

@spcl_eth

Guaranteeing processor rate

 E.g., you can use EDF to guarantee a rate of progress for a long-

running task

 Break task into periodic jobs, period p and time s.

 A task arrives at start of a period

 Deadline is the end of the period

 Provides a reservation scheduler which:

 Ensures task gets s seconds of time every p seconds

 Approximates weighted fair queuing

 Algorithm is regularly rediscovered…

61

spcl.inf.ethz.ch

@spcl_eth

Multiprocessor Scheduling

62

spcl.inf.ethz.ch

@spcl_eth

Challenge 1: sequential programs on multiprocessors

 Queuing theory straightforward, although:

 More complex than uniprocessor scheduling

 Harder to analyze

Task queue

Core 0

Core 1

Core 2

Core 3

but…

63

spcl.inf.ethz.ch

@spcl_eth

It’s much harder

 Overhead of locking and sharing queue

 Classic case of scaling bottleneck in OS design

 Solution: per-processor scheduling queues

Core 0

Core 1

Core 2

Core 3

In practice, each

is more complex

e.g., MFQ

64

spcl.inf.ethz.ch

@spcl_eth

It’s much harder

 Threads allocated arbitrarily to cores

 tend to move between cores

 tend to move between caches

 really bad locality and hence performance

 Solution: affinity scheduling

 Keep each thread on a core most of the time

 Periodically rebalance across cores

 Note: this is non-work-conserving!

 Alternative: hierarchical scheduling (Linux)

65

spcl.inf.ethz.ch

@spcl_eth

Challenge 2: parallel applications

 Global barriers in parallel applications

One slow thread has huge effect on performance

 Corollary of Amdahl’s Law

 Multiple threads would benefit from cache sharing

 Different applications pollute each others’ caches

 Leads to concept of “co-scheduling”

 Try to schedule all threads of an application together

 Critically dependent on synchronization concepts

66

spcl.inf.ethz.ch

@spcl_eth

Multicore scheduling

 Multiprocessor scheduling is two-dimensional

 When to schedule a task?

 Where (which core) to schedule on?

 General problem is NP hard

 But it’s worse than that:

 Don’t want a process holding a lock to sleep

 Might be other running tasks spinning on it

 Not all cores are equal

 In general, this is a wide-open research problem

67

spcl.inf.ethz.ch

@spcl_eth

Little’s Law

 Assume, in a train station:

 100 people arrive per minute

 Each person spends 15 minutes in the station

 How big does the station have to be (house how many people)

 Little’s law: “The average number of active tasks in a system is

equal to the average arrival rate multiplied by the average time a

task spends in a system”

68

