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ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-o062- 2-00)
Chapter 3: Scheduling
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Image (c) 2007 Shuets Udono [CC BY-SA 2.0] via Wikimedia Commons

New submitter robertchin writes "Michael Barr recently testified in the Bookout v. Toyota Motor Corp lawsuit that the likely
cause of unintentional acceleration in the Toyota Camry may have been caused by a stack overflow. Due to recursion
overwriting critical data past the end of the stack and into the real time operating system memory area, the throttle was left
in an open state and the process that controlled the throttle was terminated. How can users protect themselves from
sometimes life endangering software bugs?" Source: Slashdot Feb. 2014
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Many-to-one threads

= Early “thread libraries”
» Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
= aka. lightweight threads, tasks (differences in control)
= No kernel support required
= Also (confusingly) “Lightweight Processes”
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Address space layout for user level threads

Thread 1 stack
Stack + L
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Thread 3 stack
Thread 2 stack
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One-to-one user threads

= Every user thread is/has a kernel thread.

= Equivalent to:

= multiple processes sharing an address space

» Except that “process” now refers to a group of threads
= Most modern OS threads packages:

» Linux, Solaris, Windows XP, MacOSX, etc.
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One-to-one user threads
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One-to-one user threads
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Comparison

User-level threads

Cheap to create and
destroy

Fast to context switch

Can block entire process
= Not just on system calls
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2

One-to-one threads

Memory usage (kernel
stack)

Slow to switch
Easier to schedule
Nicely handles blocking
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Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Only way to go for a multiprocessor
= |.e., pretty much everything these days

= Can “pin” user thread to kernel thread for
performance/predictability

= Thread migration costs are “interesting”...
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Many-to-many threads
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Administrivia

= |try to indicate book chapters
= But this will not be complete (no book covers 100%)
» So consider it a rough approximation
= Last lecture OSPP Sections 3.1 and 4.1

= Lecture recording
= http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L
= Content of the OS part did not change

= Please let me know if you find the quick quiz silly!


http://www.multimedia.ethz.ch/lectures/infk/2013/spring/252-0062-00L
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A Small Quiz

= True or false (raise hand)
= Aprocess has a virtual CPU
= Athread has a virtual CPU
» Athread has a private set of open files
= A process is a resource container
= A context switch can be caused by a thread
= When a process calls a blocking I/O, it is put into runnable state
= Azombie is a dead process waiting for its parent
= Simple user-level threads run efficiently on multiprocessors
= A device can trigger a system call
»= Adevice can trigger an upcall
» Unix fork() starts a new program
= Windows CreateProcess starts a new program
= A buggy process can overwrite the stack of another process
= User-level threads can context switch without a syscall
» The scheduler always runs in a kernel thread
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Last time

= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

= This time
= OSPP Chapter 7

13
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Scheduling is...

Deciding how to allocate a single resource among multiple clients
» Inwhat order and for how long

= Usually refers to CPU scheduling
= Focus of this lecture — we will look at selected systems/research
» OS also schedules other resources (e.g., disk and network 10)

= CPU scheduling involves deciding:
= Which task next on a given CPU?
= For how long should a given task run?
= On which CPU should a task run?

Task: process, thread, domain, dispatcher, ...

14
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Scheduling

= What metric is to be optimized?
— Fairness (but what does this mean?)
— Policy (of some kind)
— Balance/utilization (keep everything being used)
— Increasingly: Power (or Energy usage)

= Usually these are in contradiction...

15
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Objectives
= General:
= Fairness

= Enforcement of policy
= Balance/utilization

= Others depend on workload, or architecture:

= Batch jobs, interactive, realtime and multimedia
= SMP, SMT, NUMA, multi-node
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Challenge: Complexity of scheduling algorithms

= Scheduler needs CPU to decide what to schedule
= Any time spent in scheduler is “wasted” time
= Want to minimize overhead of decisions
To maximize utilization of CPU

= But low overhead is no good if your scheduler picks the
“wrong” things to run!

— Trade-off between:
scheduler complexity/overhead and
guality of resulting schedule

17
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Challenge: Frequency of scheduling decisions

= Increased scheduling frequency
=> increasing chance of running something different

Leads to higher context switching rates,
= lower throughput

» Flush pipeline, reload register state
= Maybe flush TLB, caches
» Reduces locality (e.g., in cache)

18
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Batch workloads

*  “Run this job to completion and tell me when you’re done”
— Typical mainframe or supercomputer use-case
— Used in large clusters of different sorts ...

« Goals:
— Throughput (jobs per hour)
— Wait time (time to execution)
— Turnaround time (submission to termination)
— Utilization (don’t waste resources)

19
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Interactive workloads

= “Wait for external events, and react before the user gets
annoyed”

= Word processing, browsing, fragging, etc.
= Common for PCs, phones, etc.

= Goals:

» Response time: how quickly does something happen?
» Proportionality: some things should be quicker

21
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Soft realtime workloads

= “This task must complete in less than 50ms”, or

= “This program must get 10ms CPU every 50ms”
— Data acquisition, 1/O processing
— Multimedia applications (audio and video)

= Goals:
— Deadlines
— Guarantees
— Predictability (real time # fast!)

22
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Hard realtime workloads

= “Ensure the plane’s control surfaces move correctly in response
to the pilot’s actions”

= “Fire the spark plugs in the car’s engine at the right time”
= Mission-critical, extremely time-sensitive control applications

= Not covered in this course: very different techniques required...

23
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Scheduling assumptions and definitions

24
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CPU- and I/O-bound tasks

CPU-bound task:

25
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CPU- and I/O-bound tasks

CPU-bound task:
|/O-bound task:
_ ] -
L

26
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CPU- and I/O-bound tasks

CPU-bound task:
CPU burst Wiaiting for 1/0
|/O-bound task: / /
_ | B
L
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Simplifying assumptions

= Only one processor
= We'll relax this (much) later

= Processor runs at fixed speed
» Realtime == CPU time
* Not true in reality for power reasons
= DVFS: Dynamic Voltage and Frequency Scaling
* |n many cases, however, efficiency = run flat-out until idle

28
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Simplifying assumptions

= We only consider work-conserving scheduling
= No processor is idle if there is a runnable task
= Question: is this always a reasonable assumption?

= The system can always preempt a task
* Rules out some very small embedded systems
= And hard real-time systems...
= And early PC/Mac OSes...

29
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When to schedule?

When:

1. Arunning process blocks (or calls yield())
. e.g., initiates blocking I/O or waits on a child

2. A blocked process unblocks
. I/O completes

3. Arunning or waiting process terminates

4.  An interrupt occurs
. I/O or timer

- 2 or 4 can involve preemption

30
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Preemption

* Non-preemptive scheduling:
— Require each process to explicitly give up the scheduler
« Start I/O, executes a “yield()” call, etc.
— Windows 3.1, older MacOS, some embedded systems

*  Preemptive scheduling:
— Processes dispatched and descheduled without warning
< Often on a timer interrupt, page fault, etc.
— The most common case in most OSes
— Soft-realtime systems are usually preemptive
— Hard-realtime systems are often not!

31
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Overhead

= Dispatch latency:
= Time taken to dispatch a runnable process

= Scheduling cost
= 2 x (half context switch) + (scheduling time)

= Time slice allocated to a process should be significantly more
than scheduling overhead!

32
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Overhead example (from Tanenbaum)

= Suppose process switch timeis 1ms

= Run each process for 4ms
= What is the overhead?

33
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Overhead example (from Tanenbaum)

= Suppose process switch timeis 1ms

= Run each process for 4ms
= 20% of system time spent in scheduler ®

= Run each process for 100ms
50 jobs = maximum response time?

34
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Overhead example (from Tanenbaum)

= Suppose process switch timeis 1ms

= Run each process for 4ms
= 20% of system time spent in scheduler ®

= Run each process for 100ms
50 jobs = response time up to 5 seconds ®

= Tradeoff: response time vs. scheduling overhead

35
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Batch-oriented scheduling

36
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Batch scheduling: why bother?

= Mainframes are sooooo 1970!

= But:
» Most systems have batch-like background tasks
» Yes, even phones are beginning to
= CPU bursts can be modeled as batch jobs
= Web services are request-based

Google

oiNg

37
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First-come first-served

= Simplest algorithm!

2

Task Execution
= Example: time
= \Waiting times: 0, 24, 27 A 24
= Avg. = (0+24+27)/3
=17 B 3
= But.. ¢ 3
A B C
0 24 27 30
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First-come first-served

= Different arrival order

Task Execution
= Example: time
= \Waiting times: 6, 0, 3 A 24
= Avg. = (0+3+6)/3 =3
B 3
= Much better © c 2
= But unpredictable ®
B C
0 3 6 30
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Convoy phenomenon

= Short processes back up behind long-running processes

= Well-known (and widely seen!) problem
» Famously identified in databases with disk 1/O
= Simple form of self-synchronization

= Generally undesirable...

= FIFO used for, e.g., memcached

40
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Shortest-job first

= Always run process with

time)
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the shortest execution time. Task Execution
time
= Optimal: minimizes waiting A 6
time (and hence turnaround
B 3
C 7
D 3
D A B

41
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Optimality

= Consider n jobs executed in sequence, each with processing
timet,0<i<n

1 n-1
= Mean turnaround time is: Avg .= —> (n—i)-t,
n i=0

= Minimized when shortest job is first

= E.g., for 4jobs: (4t0 + 3t1 + 2t2 + ts)

4
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Execution time estimation

= Problem: what is the execution time?
* For mainframes or supercomputers, could punt to user
= And charge them more if they were wrong

= For non-batch workloads, use CPU burst times
= Keep exponential average of prior bursts

= cf.,, TCP RTT estimator ¢ —a ‘-t + (]_ — o ) T
n+1 n n

= Or just use application information
= Web pages: size of web page

43
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SJF & preemption

Problem: jobs arrive all the time

“Shortest remaining time next”
= New, short jobs may preempt longer jobs already running

Still not an ideal match for dynamic, unpredictable workloads
= |n particular, interactive ones
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Scheduling interactive loads

45
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Round-robin

Simplest interactive algorithm
Run all runnable tasks for fixed quantum in turn

Advantages:

» |t's easy to implement

» |t's easy to understand, and analyze

= Higher turnaround time than SJF, but better response

Disadvantages:
= |t's rarely what you want
» Treats all tasks the same
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Priority

Very general class of scheduling algorithms
Assign every task a priority

Dispatch highest priority runnable task
Priorities can be dynamically changed

Schedule processes with same priority using
» Round Robin

= FCFS

= efc.
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Priority queues

Priority

Priority 100 - T
Priority 4
Priority 3
Priority 2 = T = T
Priority 1 - T

~

Runnable tasks

"y @spcl_eth
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Multi-level queues

= Can schedule different priority levels differently:
» Interactive, high-priority: round robin
= Batch, background, low priority, real time: FCFS

= |deally generalizes to hierarchical scheduling



- , T : spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

2

Starvation

= Strict priority schemes do not guarantee progress for all tasks

= Solution: Ageing
» Tasks which have waited a long time are gradually increased in priority

= Eventually, any starving task ends up with the highest priority
» Reset priority when quantum is used up

50
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Multilevel Feedback Queues

= |dea: penalize CPU-bound tasks to benefit I/O bound tasks
» Reduce priority for processes which consume their entire quantum
= Eventually, re-promote process

= |/O bound tasks tend to block before using their quantum = remain at high
priority

= Very general: any scheduling algorithm can reduce to this
(problem is implementation)
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Example: Linux o(1) scheduler

= 140 level Multilevel Feedback Queue
= 0-99 (high priority):
static, fixed, “realtime”
FCFS or RR

= 100-139: User tasks, dynamic
Round-robin within a priority level
Priority ageing for interactive (I/O intensive) tasks

= Complexity of scheduling is independent of no. tasks

= Two arrays of queues: “runnable” & “waiting”
= When no more task in “runnable” array, swap arrays

52
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Example: Linux “completely fair scheduler”

- Task’s priority = how little progress it has made
— Adjusted by fudge factors over time
— Get “bonus” if a task yields early (his time is distributed evenly)

* Implementation uses Red-Black tree
— Sorted list of tasks
— Operations now O(log n), but this is fast

- Essentially, this is the old idea of “fair queuing” from packet
networks
— Also called “generalized processor scheduling”
— Ensures guaranteed service rate for all processes
— CFS does not, however, expose (or maintain) the guarantees

53
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Problems with UNIX Scheduling

= UNIX conflates protection domain and resource principal
* Priorities and scheduling decisions are per-process (thread)

= However, may want to allocate resources across processes, or
separate resource allocation within a process

= E.g., web server structure
Multi-process
Multi-threaded
Event-driven
= |f | run more compiler jobs than you, | get more CPU time

= |In-kernel processing is accounted to nobody

54
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Resource Containers [Banga et al., 1999]

New OS abstraction for explicit resource management, separate
from process structure

= QOperations to create/destroy, manage hierarchy, and associate
threads or sockets with containers

= Independent of scheduling algorithms used

= All kernel operations and resource usage accounted to a
resource container

— Explicit and fine-grained control over resource usage
— Protects against some forms of DoS attack

= Most obvious modern form: virtual machines, containers
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Real Time

56
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Real-time scheduling

= Problem: giving real time-based guarantees to tasks
» Tasks can appear at any time
» Tasks can have deadlines
= Execution time is generally known
» Tasks can be periodic or aperiodic

= Must be possible to reject tasks which are unschedulable, or
which would result in no feasible schedule

57
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Example: multimedia scheduling

Starting moment Deadline .
for A1, B1, C1 for A1 Deadline for B1

Deadline for C1

ki i /

Al A1 A2 A3 Ad A5
Bl B1 | B2 | B3 | B4 |
CICHl C7] iCa

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (msec) —=
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Rate-monotonic scheduling

= Schedule periodic tasks by always running task with shortest
period first.

= Static (offline) scheduling algorithm

= Suppose:
= m tasks
= C, is the execution time of i'th task
= P, is the period of i'th task

= Then RMS will find a feasible schedule if:

Z &s m(Z%—l)

., P.

= (Proofis beyond scope of this course)
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Earliest deadline first

= Schedule task with earliest deadline first (duh..)
= Dynamic, online.
» Tasks don’t actually have to be periodic...
= More complex - O(n) — for scheduling decisions

= EDF will find a feasible schedule if:

m

C, _,
— <
iZ:1 P,

= Which is very handy. Assuming zero context switch time...

3y @spcl_eth
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Guaranteeing processor rate

= E.g.,you can use EDF to guarantee a rate of progress for along-
running task

» Break task into periodic jobs, period p and time s.
= Atask arrives at start of a period
» Deadline is the end of the period

= Provides areservation scheduler which:
» Ensures task gets s seconds of time every p seconds
= Approximates weighted fair queuing

= Algorithm is regularly rediscovered...
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Multiprocessor Scheduling

62
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Challenge 1: sequential programs on multiprocessors

= Queuing theory = straightforward, although:
= More complex than uniprocessor scheduling
= Harder to analyze

/7 Core O
~ ___—>|Core1l
E —> | Core 2

\ Core 3

Task queue

but...
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It’s much harder

= QOverhead of locking and sharing queue
= Classic case of scaling bottleneck in OS design

= Solution: per-processor scheduling queues

>| Core 0O

>| Core 1

> | Core 2

L

. > | Core 3

In practice, each
IS more complex
e.g., MFQ

64
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It’s much harder

= Threads allocated arbitrarily to cores
= tend to move between cores
= tend to move between caches
= really bad locality and hence performance

= Solution: affinity scheduling
= Keep each thread on a core most of the time

= Periodically rebalance across cores
* Note: this is non-work-conserving!

= Alternative: hierarchical scheduling (Linux)

65
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Challenge 2: parallel applications

= Global barriers in parallel applications =
One slow thread has huge effect on performance

= Corollary of Amdahl’s Law

= Multiple threads would benefit from cache sharing
= Different applications pollute each others’ caches

= Leads to concept of “co-scheduling”
= Try to schedule all threads of an application together

= Critically dependent on synchronization concepts

66
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Multicore scheduling

= Multiprocessor scheduling is two-dimensional
= When to schedule a task?
= Where (which core) to schedule on?

= General problem is NP hard ®

= Butit’s worse than that:

= Don’t want a process holding a lock to sleep
= Might be other running tasks spinning on it

= Not all cores are equal

= In general, this is a wide-open research problem
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Little’s Law

= Assume, in atrain station:
= 100 people arrive per minute
= Each person spends 15 minutes in the station
= How big does the station have to be (house how many people)

= Little’s law: “The average number of active tasks in a system is

equal to the average arrival rate multiplied by the average time a
task spends in a system”
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