
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 2: Processes

© source: xkcd.com

RSA Key Extraction via Low-Bandwidth

 Acoustic Cryptanalysis

Genkin, Shamir, Tromer, Dec. 2013

“Here, we describe a new acoustic cryptanalysis

key extraction attack, applicable to GnuPG's

current implementation of RSA. The attack can

extract full 4096-bit RSA decryption keys from

laptop computers (of various models), within an

hour, using the sound generated by the computer

during the decryption of some chosen ciphertexts.”

 http://tau.ac.il/~tromer/acoustic/

spcl.inf.ethz.ch

@spcl_eth

Last time: introduction

• Introduction: Why?

• Roles of the OS

• Referee

• Illusionist

• Glue

• Structure of an OS

2

February 12, 2016

spcl.inf.ethz.ch

@spcl_eth

This time

 Entering and exiting the kernel

 Process concepts and lifecycle

 Context switching

 Process creation

 Kernel threads

 Kernel architecture

 System calls in more detail

 User-space threads

3

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device Device CPU

4

spcl.inf.ethz.ch

@spcl_eth

Kernel

 That part of the OS which runs in privileged mode

 Large part of Unix and Windows (except libraries)

 Small part of L4, Barrelfish, etc. (microkernels)

 Does not exist in some embedded systems

 Also known as:

 Nucleus, nub, supervisor, …

5

spcl.inf.ethz.ch

@spcl_eth

The kernel is a program!

 Kernel is just a (special) computer program.

 Typically an event-driven server.

 Responds to multiple entry points:

 System calls

 Hardware interrupts

 Program traps

 May also include internal threads.

6

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device Device CPU

7

spcl.inf.ethz.ch

@spcl_eth

System Libraries

 Convenience functions

 printf(), etc.

 Common functionality

 System call wrappers

 Create and execute system calls from high-level languages

 See „man syscalls‟ on Linux

8

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device Device CPU

9

spcl.inf.ethz.ch

@spcl_eth

Daemons

 Processes which are part of the OS

 Microkernels: most of the OS

 Linux: increasingly large quantity

 Advantages:

 Modularity, fault tolerance

 Easier to schedule…

10

spcl.inf.ethz.ch

@spcl_eth

Entering and exiting the kernel

11

spcl.inf.ethz.ch

@spcl_eth

 System Startup and …

 Exception (aka. trap): caused by user program

 Interrupt: caused by “something else”

 System calls

 Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)

 Division by zero

 Fork

 Incoming network packet

 Segmentation violation

 Read

 Keyboard input

When is the kernel entered?

12

spcl.inf.ethz.ch

@spcl_eth

Recall: System Calls

 RPC to the kernel

 Kernel is a series of syscall event handlers

 Mechanism is hardware-dependent

System calls

Privileged mode

User mode

User process

runs
Process resumes

Execute kernel

code

Execute

syscall

13

spcl.inf.ethz.ch

@spcl_eth

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

 Passed in processor registers

 Stored in memory (address (pointer) in register)

 Pushed on the stack

 System library (libc) wraps as a C function

 Kernel code wraps handler as C call

14

spcl.inf.ethz.ch

@spcl_eth

When is the kernel exited?

 Creating a new process

 Including startup

 Resuming a process after a trap

 Exception, interrupt or system call

 User-level upcall

 Much like an interrupt, but to user-level

 Switching to another process

15

spcl.inf.ethz.ch

@spcl_eth

Processes

16

spcl.inf.ethz.ch

@spcl_eth

Process concept

“The execution of a program with restricted rights”

 Virtual machine, of sorts

 On older systems:

 Single dedicated processor

 Single address space

 System calls for OS functions

 In software:

computer system = (kernel + processes)

17

spcl.inf.ethz.ch

@spcl_eth

Process ingredients

 Virtual processor

 Address space

 Registers

 Instruction Pointer / Program Counter

 Program text (object code)

 Program data (static, heap, stack)

 OS “stuff”:

 Open files, sockets, CPU share,

 Security rights, etc.

18

spcl.inf.ethz.ch

@spcl_eth

Process address space

Stack

Text

Data

BSS

00000000

7FFFFFFF

(addresses are examples: some

machines used the top address

bit to indicate kernel mode)

Should look

familiar …

19

spcl.inf.ethz.ch

@spcl_eth

Process lifecycle

runnable

(ready)
running

blocked

(waiting)
terminated

created

dispatch

preemption

I/O

operation

I/O

completes

runnable

(ready)
running

runnable

(ready)

blocked

(waiting)

running
runnable

(ready)

20

spcl.inf.ethz.ch

@spcl_eth

Multiplexing

 OS time-division multiplexes processes

 Or space-division on multiprocessors

 Each process has a Process Control Block (PCB)

 In-kernel data structure

 Holds all virtual processor state

Identifier and/or name

Registers

Memory used, pointer to page table

Files and sockets open, etc.

21

spcl.inf.ethz.ch

@spcl_eth

Process control block

Stack

Text

Data

BSS

Process

Control

Block

k
e
rn

e
l
m

e
m

o
ry

P
ro

c
e
s
s
 a

d
d
re

s
s
 s

p
a
c
e

(other kernel

data structures)

22

spcl.inf.ethz.ch

@spcl_eth

Process switching

[Kernel executes]

[Kernel executes]

[Process A executes]

Process A Kernel Process B

T
im

e

[Process B executes]

[Process A executes]

Save state to PCB(A)

Save state to PCB(B)

Restore from PCB(A)

Restore from PCB(B)

23

spcl.inf.ethz.ch

@spcl_eth

Process Creation

24

spcl.inf.ethz.ch

@spcl_eth

Process creation

 Bootstrapping problem. Need:

 Code to run

 Memory to run it in

 Basic I/O set up (so you can talk to it)

 Way to refer to the process

 Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

25

spcl.inf.ethz.ch

@spcl_eth

Process creation on Windows

BOOL CreateProcess(

 in_opt LPCTSTR ApplicationName,

 inout_opt LPTSTR CommandLine,

 in_opt LPSECURITY_ATTRIBUTES ProcessAttributes,

 in_opt LPSECURITY_ATTRIBUTES ThreadAttributes,

 in BOOL InheritHandles,

 in DWORD CreationFlags,

 in_opt LPVOID Environment,

 in_opt LPCTSTR CurrentDirectory,

 in LPSTARTUPINFO StartupInfo,

 out LPPROCESS_INFORMATION ProcessInformation

);

What to run?

What rights

will it have?

What will it see

when it starts up?

The result

Did it work?

Moral: the parameter space is large!

26

spcl.inf.ethz.ch

@spcl_eth

Dramatically simplifies creating processes:

1. fork(): creates “child” copy of calling process

2. exec(): replaces text of calling process with a new program

3. There is no “CreateProcess(...)”.

Unix is entirely constructed as a family tree of such processes.

27

Unix fork()and exec()

spcl.inf.ethz.ch

@spcl_eth

Unix as a process tree

Exercise:

work out

how to do

this on your

favorite Unix

or Linux

machine…

28

spcl.inf.ethz.ch

@spcl_eth

Fork in action

pid_t p = fork();

if (p < 0) {

 // Error…

 exit(-1);

} else if (p == 0) {

 // We’re in the child

 execlp(“/bin/ls”, “ls”, NULL);

} else {

 // We’re a parent.

 // p is the pid of the child

 wait(NULL);

 exit(0);

}
Child process can‟t

actually be cleaned

up until parent

“waits” for it.

Return code from

fork() tells you

whether you‟re in the

parent or child

(cf. setjmp())

29

spcl.inf.ethz.ch

@spcl_eth

Process state diagram for Unix

runnable

(ready)
running

blocked

(waiting)

Dead

(and gone)

forked

dispatch

preemption

I/O

operation

I/O

completes

runnable

(ready)
running

runnable

(ready)

parent

calls wait()

It really is

called a

Zombie

blocked

(waiting)

running
runnable

(ready)

“undead”

30

spcl.inf.ethz.ch

@spcl_eth

Kernel Threads

31

spcl.inf.ethz.ch

@spcl_eth

How do threads fit in?

 It depends…

 Types of threads:

 Kernel threads

 One-to-one user-space threads

 Many-to-one

 Many-to-many

 Do NOT confuse this with hardware threads/SMT/Hyperthreading

 In these, the CPU offers more physical resources for threads!

32

spcl.inf.ethz.ch

@spcl_eth

Kernel threads

 Kernels can (and some do) implement threads

 Multiple execution contexts inside the kernel

 Much as in a JVM

 Says nothing about user space

 Context switch still required to/from user process

 First, how many stacks are there in the kernel?

33

spcl.inf.ethz.ch

@spcl_eth

Process switching

[Kernel executes]

[Kernel executes]

[Process A executes]

Process A Kernel Process B

T
im

e

[Process B executes]

[Process A executes]

What‟s

happening

here?

A thread?

Save state to PCB(A)

Save state to PCB(B)

Restore from PCB(A)

Restore from PCB(B)

34

spcl.inf.ethz.ch

@spcl_eth

Kernel architecture

 Basic Question: How many kernel stacks?

 Unix 6th edition has a kernel stack per process

 Arguably complicates design

 Q. On which stack does the thread scheduler run?

 A. On the first thread (#1)

 Every context switch is actually two!

 Linux et al. replicate this, and try to optimize it.

 Others (e.g., Barrelfish) have only one kernel stack per CPU

 Kernel must be purely event driven: no long-running kernel tasks

 More efficient, less code, harder to program (some say).

35

spcl.inf.ethz.ch

@spcl_eth

Process switching revisited

Process A Kernel stack A Process B Kernel stack B
Kernel stack 0

For a kernel with

multiple kernel

stacks

With cleverness,

can sometimes

run scheduler on

current process‟

kernel stack.

Save to PCB(A)

Restore

PCB(B)

Decide to

switch
process

Pick

process to run

Switch to

Kernel
stack B

36

spcl.inf.ethz.ch

@spcl_eth

System Calls in more detail

 We can now say in more detail what happens during a system

call

 Precise details are very dependent on OS and hardware

 Linux has 3 different ways to do this for 32-bit x86 alone!

 Linux:

 Good old int 0x80 or 0x2e (software interrupt, syscall number in EAX)

Set up registers and call handler

 Fast system calls (sysenter/sysexit, >Pentium II)

CPU sets up registers automatically

37 http://www.int80h.org/

http://www.int80h.org/

spcl.inf.ethz.ch

@spcl_eth

Performing a system call

In user space:

1. Marshall the arguments somewhere safe

2. Saves registers

3. Loads system call number

4. Executes SYSCALL instruction

(or SYSENTER, or INT 0x80, or..)

5. And?

38

spcl.inf.ethz.ch

@spcl_eth

System calls in the kernel

 Kernel entered at fixed address

 Privileged mode is set

 Need to call the right function and return, so:

1. Save user stack pointer and return address

– In the Process Control Block

2. Load SP for this process‟ kernel stack

3. Create a C stack frame on the kernel stack

4. Look up the syscall number in a jump table

5. Call the function (e.g., read(), getpid(), open(), etc.)

39

spcl.inf.ethz.ch

@spcl_eth

Returning in the kernel

 When function returns:

1. Load the user space stack pointer

2. Adjust the return address to point to:

Return path in user space back from the call, OR

Loop to retry system call if necessary

3. Execute “syscall return” instruction

 Result is execution back in user space, on user stack

 Alternatively, can do this to a different process…

40

spcl.inf.ethz.ch

@spcl_eth

User-space threads

41

spcl.inf.ethz.ch

@spcl_eth

From now on assume:

 Previous example was Unix 6th Edition:

 Which had no threads per se, only processes

 i.e., Process ↔ Kernel stack

 From now on, we’ll assume:

 Multiple kernel threads per CPU

 Efficient kernel context switching

 How do we implement user-visible threads?

42

spcl.inf.ethz.ch

@spcl_eth

What are the options?

1. Implement threads within a process (one kernel thread)

2. Multiple kernel threads in a process

3. Some combination of the above

 and other more unusual cases we won’t talk about…

43

spcl.inf.ethz.ch

@spcl_eth

Many-to-one threads

 Early “thread libraries”

 Green threads (original Java VM)

 GNU Portable Threads

 Standard student exercise: implement them!

 Sometimes called “pure user-level threads”

 aka. lightweight threads, tasks (differences in control)

 No kernel support required

 Also (confusingly) “Lightweight Processes”

44

spcl.inf.ethz.ch

@spcl_eth

Many-to-one threads

Kernel

User

CPU 0 CPU 1

45

spcl.inf.ethz.ch

@spcl_eth

Address space layout for user level threads

Stack

Text

Data

BSS

Text

BSS

Thread 1 stack

Thread 2 stack

Thread 3 stack

Data

Just

allocate

on the

heap

46

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

 Every user thread is/has a kernel thread.

 Equivalent to:

 multiple processes sharing an address space

 Except that “process” now refers to a group of threads

 Most modern OS threads packages:

 Linux, Solaris, Windows XP, MacOSX, etc.

47

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

Kernel

User

CPU 0 CPU 1

48

spcl.inf.ethz.ch

@spcl_eth

One-to-one user threads

Stack

Text

Data

BSS

Text

Data

BSS

Thread 1 stack

Thread 2 stack

Thread 3 stack

49

spcl.inf.ethz.ch

@spcl_eth

Comparison

User-level threads

 Cheap to create and

destroy

 Fast to context switch

 Can block entire process

 Not just on system calls

One-to-one threads

 Memory usage (kernel

stack)

 Slow to switch

 Easier to schedule

 Nicely handles blocking

50

spcl.inf.ethz.ch

@spcl_eth

Many-to-many threads

 Multiplex user-level threads over several kernel-level threads

 Only way to go for a multiprocessor

 I.e., pretty much everything these days

 Can “pin” user thread to kernel thread for

performance/predictability

 Thread migration costs are “interesting”…

51

spcl.inf.ethz.ch

@spcl_eth

Many-to-many threads

Kernel

User

CPU 0 CPU 1

52

spcl.inf.ethz.ch

@spcl_eth

Next week

 Synchronization:

 How to implement those useful primitives

 Interprocess communication

 How processes communicate

 Scheduling:

 Now we can pick a new process/thread to run, how do we decide which

one?

53

