
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 1:

Introduction to Operating Systems
If Operating Systems were Airways (~year 2000)

UNIX Airways Everyone brings one piece of the plane along when they come to the airport. They all go out on the

runway and put the plane together piece by piece, arguing non-stop about what kind of plane they are supposed to

be building.

Air DOS Everybody pushes the airplane until it glides, then they jump on and let the plane coast until it hits the

ground again. Then they push again, jump on again, and so on ...

Mac Airlines All the stewards, captains, baggage handlers, and ticket agents look and act exactly the same. Every

time you ask questions about details, you are gently but firmly told that you don't need to know, don't want to know,

and everything will be done for you without your ever having to know, so just shut up.

Windows Air The terminal is pretty and colorful, with friendly stewards, easy baggage check and boarding, and a

smooth take-off. After about 10 minutes in the air, the plane explodes with no warning whatsoever.

Windows NT Air Just like Windows Air, but costs more, uses much bigger planes, and takes out all the other

aircraft within a 40-mile radius when it explodes.

Linux Air Disgruntled employees of all the other OS airlines decide to start their own airline. They build the planes,

ticket counters, and pave the runways themselves. They charge a small fee to cover the cost of printing the ticket,

but you can also download and print the ticket yourself. When you board the plane, you are given a seat, four bolts,

a wrench and a copy of the Seat-HOWTO.html. Once settled, the fully adjustable seat is very comfortable, the plane

leaves and arrives on time without a single problem, the in-flight meal is wonderful. You try to tell customers of the

other airlines about the great trip, but all they can say is, "You had to do what with the seat?“ (Author unknown)

spcl.inf.ethz.ch

@spcl_eth

 Two parts:

 Networks – Adrian Perrig

 Operating Systems – Torsten Hoefler

 Lecture:

 Thu 8-10am, CAB G61

 Fri 10am-noon, CAB G61

 Practice sessions

 Tue (15-18): HG D 3.1, HG D 3.3

 Thu (15-18): ML F 40, ML H 41.1 (may merge)

 Fri (13-16): CAB G 57, CHN D 42

 Go to one of these sessions!

 And participate!

 Well, and participate in the lecture as well

2

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Course webpage (the authoritative information source)

 http://spcl.inf.ethz.ch/Teaching/2016-osnet/

 All slides will be there before the lecture (so you can take notes)

 Exercises are:

 Theoretical: Analysis of performance properties

 Practical: Trying out stuff + Programming exercises

 We assume you know both C and Java.

 Exercises start next week!

 There is a mailing list for questions to the TAs

 You are not subscribed but can sign up at (if you want)

 https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/2016-osnet-ta

 Please register during the break

 put your name into lists at front desk of lecture hall

Watch for resource conflicts!!

3

More Administrivia

http://spcl.inf.ethz.ch/Teaching/2016-osnet/
https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/2016-osnet-ta

spcl.inf.ethz.ch

@spcl_eth

 (No mid-term.)

 Final exam: tbd (in exam session)

 Material:

 Covered in the lectures, and/or

 Learned during the lab exercises

 We will not follow the books closely.

 All pieces will be in books though

 Optional extra readings may appear on the web

4

Exam

spcl.inf.ethz.ch

@spcl_eth

5

Course Outline

25.02.: OS Introduction

26.02.: Processes

03.03.: Scheduling

04.03.: Synchronization

10.03.: Memory Management

11.03.: Demand Paging

17.03.: File System Abstractions

18.03.: File System Implementations

24.03.: NO CLASS

07.04.: I/O Subsystem I

08.04.: I/O Subsystem II

14.04.: Virtual Machine Monitors

15.04.: Reliable Storage, Specials

21.04.: Network Intro / OSI Model

22.04.: Physical Layer

28.04.: Data Link Layer I

29.04.: Data Link Layer II

06.05.: Network Layer I

12.05.: Network Layer I

13.05.: Network Layer II

19.05.: Transport Layer

20.05: Congestion Control

26.05: Congestion Control

27.05: Application Layer

spcl.inf.ethz.ch

@spcl_eth

 Networks

 bridge space

 Databases

 bridge time

 Networks, Operating Systems, Databases

 they all manage resources

 OS, DB: all resources (storage, computation, communication)

 Networks: focus on communication

Birds-eye perspective

6

spcl.inf.ethz.ch

@spcl_eth

7

~200 sensors

Who knows what CAN is?

“Controller Area Network” - connects elements

Why do we care here?

This is a complex system

And it has been broken

http://illmatics.com/Remote%20Car%20Hacking.pdf

spcl.inf.ethz.ch

@spcl_eth

• Introduction: Why?

• Roles of the OS

• Referee

• Illusionist

• Glue

• Structure of an OS

8

Today: We start on Operating Systems!

spcl.inf.ethz.ch

@spcl_eth

Goals

• Demystify operating systems themselves

– What is an OS? What does it do?

– What is its structure?

– How do the OS and applications relate to each other?

– What services does the OS provide?

• Quintessential “systems” problem

– Non-idealizable / non-reducible

– Scaling, emergent properties

– Concurrency and asynchrony

9

spcl.inf.ethz.ch

@spcl_eth

The Book

 On the web:
http://ospp.cs.washington.edu/

10

http://ospp.cs.washington.edu/

spcl.inf.ethz.ch

@spcl_eth

Also worth a look

 Jerome H. Saltzer and M. Frans

Kaashoek:

“Principles of Computer System

Design”

 Focus on principles, with

illustrative examples

11

spcl.inf.ethz.ch

@spcl_eth

Also worth a look

 Andrew S. Tanebaum:

“Modern Operating Systems”

 Must be at least 3rd Edition!

 Very broad – lots of references

to recent (2006) research.

12

spcl.inf.ethz.ch

@spcl_eth

Introduction to

Operating Systems

13

spcl.inf.ethz.ch

@spcl_eth

Why learn about Operating Systems?

 One of the most complex topics in Computer Science!

 Very few simplifying assumptions

 Dealing with the real world

 Intersection of many areas

 Mainstream OSes are large:

 Windows 7 ~ 40-50 million lines of code

Average modern high-end car: 100 million [1]

 Linux rapidly catching up in complexity (~15 million LOC)

 Most other software systems are a subset

 Games, browsers, databases, servers, cloud, etc.

other software systems are a subset

 Games, browsers, databases, servers, cloud, etc.

14[1]: http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

spcl.inf.ethz.ch

@spcl_eth

There are lots of operating systems concepts…

 System calls

 Concurrency and asynchrony

 Processes and threads

 Security, authorization, protection

 Memory, virtual memory, and paging

 Files and file systems, data management

 I/O: Devices, Interrupts, DMA

 Network interfaces and protocol stacks

15

spcl.inf.ethz.ch

@spcl_eth

There are lots of operating systems…

16

spcl.inf.ethz.ch

@spcl_eth

Goals: what makes a good OS?

 Reliability: does it keep working?

 And availability

 Security: can it be compromised?

 And isolation: is it fair?

 Portability: how easily can it be retargeted?

 Performance: how fast/cheap/hungry is it?

 Adoption: will people use it?

 …

17

spcl.inf.ethz.ch

@spcl_eth

Operating Systems

Operating

System

Applications

Hardware

Computer Architecture and
Systems Programming

Parallel Programming

Operating Systems
(rest of this course!)

18

spcl.inf.ethz.ch

@spcl_eth

Operating System Roles

19

spcl.inf.ethz.ch

@spcl_eth

OS roles

Referee Illusionist

Glue

20

spcl.inf.ethz.ch

@spcl_eth

The Referee:

Operating

System

Hardware

System calls

Resource Manager

Application Application Application

21

spcl.inf.ethz.ch

@spcl_eth

The OS as Referee

 Sharing:

 Multiplex hardware among applications

CPU, memory, devices

 Applications shouldn’t need to be aware of each other

 Protection:

 Ensure one application can’t r/w another’s data

In memory, on disk, over network

 Ensure one application can’t use another’s resources

CPU, storage space, bandwidth, …

 Communication:

 Protected applications must still communicate

22

spcl.inf.ethz.ch

@spcl_eth

Resource management goals

 Fairness:

 No starvation, every application makes progress

 Efficiency:

 Best use of complete machine resources

 Minimize e.g. power consumption

 Predictability:

 Guarantee real-time performance

23

All in mutual

contradiction

spcl.inf.ethz.ch

@spcl_eth

Example: Threads

 Threads are virtual CPUs

 Physical resource: CPUs

 Virtual resource: Threads

 Mechanism: pre-emption, timeslicing, context switching, scheduling

 More on this later in the course…

24

spcl.inf.ethz.ch

@spcl_eth

The Illusionist

Virtualization:

 OS creates illusion of a “real” resource

 Processor, storage, network, links, …

 Virtual resource looks a bit like a physical resource

 However, is frequently quite different…

 Simpler, larger, better, …

25

spcl.inf.ethz.ch

@spcl_eth

How?

1. Multiplexing

– Divide resources up among clients

2. Emulation

– Create the illusion of a resource using software

3. Aggregation

– Join multiple resources together to create a new one

26

spcl.inf.ethz.ch

@spcl_eth

Why?

1. Sharing

– Enable multiple clients of a single resource

2. Sandboxing

– Prevent a client from accessing other resources

3. Decoupling

– Avoid tying a client to a particular instance of a resource

4. Abstraction

– Make a resource easier to use

27

spcl.inf.ethz.ch

@spcl_eth

Example: Virtual memory

 Easier memory to manage

 Physical resource: RAM

 Virtual resource: virtual memory

 Method: multiplexing

 Mechanism: virtual address translation

28

spcl.inf.ethz.ch

@spcl_eth

Example: Paged virtual memory

 More memory than you really have

 Physical resource: RAM and disk

 Virtual resource: paged virtual memory

 Method: multiplexing and emulation

 Mechanism: virtual memory + paging to/from disk

 Much more on this later in the course…

29

spcl.inf.ethz.ch

@spcl_eth

Example: Virtual machines

• Quite popular topic commercially right now:

– Xen, VMware, HyperV, kvm, etc.

• Many uses:

– Run one OS on another

– Consolidate servers

– Migrate running machines around datacenter

– Run hundreds of “honeypot” machines

– Deterministic replay of whole machines

– Etc.

30

spcl.inf.ethz.ch

@spcl_eth

Example: Files (or database!)

 Virtual resource: persistent memory

 Physical resource: disk

 Method: multiplexing, emulation

 Mechanism: block allocation, metadata

 Again, more later…

31

spcl.inf.ethz.ch

@spcl_eth

Example: Windows (not the Microsoft OS)

 Physical resource: Frame buffer and/or GPU

 Method: Multiplexing and emulation

 Mechanism: Windows as separate bitmaps/textures

32

spcl.inf.ethz.ch

@spcl_eth

Example: Virtual circuits

 Physical resource: network link

 Virtualization method: multiplexing

 Mechanism: VC identifiers, VC switching

1

2 3

4

VCI=346 VCI=1044

VCI=1044 VCI=56

Virtual circuits

Real circuits

33

spcl.inf.ethz.ch

@spcl_eth

Example: VLANs

34

 Methods: multiplexing

 Mechanisms: port assignment, tags

A

E G H

I

J

K
S2S1

B C D

F

M

N

N

S2S1

spcl.inf.ethz.ch

@spcl_eth

Glue: the OS as Abstract Machine

Operating

System

Applications

Hardware

Virtual machine

interface

Physical machine

interface

35

spcl.inf.ethz.ch

@spcl_eth

The OS as Glue

 Provides high-level abstractions

 Easier to program to

 Shared functionality for all applications

 Ties together disparate functions and services

 Extends hardware with added functionality

 Direct programming of hardware unnecessary

 Hides details of hardware

 Applications decoupled from particular devices

36

spcl.inf.ethz.ch

@spcl_eth

Services provided by an OS

• Program execution

– Load program, execute on 1 or more processors

• Access to I/O devices

– Disk, network, keyboard, screen,…

• Protection and access control

– For files, connections, etc.

• Error detection and reporting

– Trap handling, etc.

• Accounting and auditing

– Statistics, billing, forensics, etc.

37

spcl.inf.ethz.ch

@spcl_eth

Operating System Structure

38

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

CPU Device Device

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU

39

spcl.inf.ethz.ch

@spcl_eth

Privileged Mode and User Mode

 As we saw in Computer Architecture,

most CPUs have a “privileged mode”:

 ia32 protection rings

 VAX kernel mode

 Etc.

 Most Operating Systems use this for protection

 In particular, protecting the OS from applications!

40

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device DeviceCPU

41

spcl.inf.ethz.ch

@spcl_eth

Kernel

 That part of the OS which runs in privileged mode

 Large part of Unix and Windows (except libraries)

 Small part of L4, Barrelfish, etc. (microkernels)

 Does not exist in some embedded systems

 Also known as:

 Nucleus, nub, supervisor, …

42

spcl.inf.ethz.ch

@spcl_eth

The kernel is a program!

 Kernel is just a (special) computer program.

 Typically an event-driven server.

 Responds to multiple entry points:

 System calls

 Hardware interrupts

 Program traps

 May also include internal threads.

43

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device DeviceCPU

44

spcl.inf.ethz.ch

@spcl_eth

System Libraries

 Convenience functions

 strcmp(), etc.

 Common functionality

 System call wrappers

 Create and execute system calls from high-level languages

 See ‘man syscalls’ on Linux

45

spcl.inf.ethz.ch

@spcl_eth

General OS structure

Kernel

Privileged mode

User mode

Application

System Library

Application

System Library

Server process

(daemon)

System Library

System calls

CPU Device DeviceCPU

46

spcl.inf.ethz.ch

@spcl_eth

Daemons

 Processes which are part of the OS

 Microkernels: most of the OS

 Linux: increasingly large quantity

 Advantages:

 Modularity, fault tolerance

 Easier to schedule…

47

spcl.inf.ethz.ch

@spcl_eth

Entering and exiting the kernel

48

spcl.inf.ethz.ch

@spcl_eth

When is the kernel entered?

 Startup

 Interrupt: caused by “something else”

 Exception: caused by user program (also called “trap”)

 System calls

49

spcl.inf.ethz.ch

@spcl_eth

Recall: System Calls

 RPC to the kernel

 Kernel is a series of syscall event handlers

 Mechanism is hardware-dependent

System calls

Privileged mode

User mode

User process

runs
Process resumes

Execute kernel

code

Execute

syscall

50

spcl.inf.ethz.ch

@spcl_eth

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

 Passed in processor registers

 Stored in memory (address in register)

 Pushed on the stack

 System library (libc) wraps as a C function

 Kernel code wraps handler as C call

51

spcl.inf.ethz.ch

@spcl_eth

When is the kernel exited?

 Creating a new process

 Including startup

 Resuming a process after a trap

 Exception, interrupt or system call

 User-level upcall

 Much like an interrupt, but to user-level

 Switching to another process

52

