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Chapter 11: Virtual Machine Monitors
A SIGINT in time saves a kill -9
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 True or false (raise hand)

 Spooling can be used to improve access times

 Buffering can cope with device speed mismatches

 The Linux kernel identifies devices using a single number

 From userspace, devices in Linux are identified through files

 Standard BSD sockets require two or more copies at the host

 Network protocols are processed in the first level interrupt handler

 The second level interrupt handler copies the packet data to userspace

 Deferred procedure calls can be executed in any process context

 Unix mbufs (and skbufs) enable protocol-independent processing

 Network I/O is not performance-critical

 NAPI’s design aims to reduce the CPU load

 NAPI uses polling to accelerate packet processing

 TCP offload reduces the server CPU load

 TCP offload can accelerate applications
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Our small quiz
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Receive-side scaling

 Observations:

 Too much traffic for one core to handle

 Cores aren’t getting any faster

 Must parallelize across cores

 Key idea: handle different flows on different cores

 But: how to determine flow for each packet?

 Can’t do this on a core: same problem!

 Solution: demultiplex on the NIC

 DMA packets to per-flow buffers / queues

 Send interrupt only to core handling flow
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Receive-side scaling

Received 

packet

Hash of 

packet 

header

pointer

Flow state:

• Ring buffer

• Message-signalled interrupt

Flow table

• IP src + dest

• TCP src + dest

Etc.

DMA 

address

Core to 

interrupt
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Receive-side scaling

 Can balance flows across cores

 Note: doesn’t help with one big flow!

 Assumes:

 n cores processing m flows is faster than one core

 Hence: 

 Network stack and protocol graph must scale on a multiprocessor.

 Multiprocessor scaling: topic for later (see DPHPC class)
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Virtual Machine Monitors
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Literature: Barham et al.: Xen and the art of virtualization

and Anderson, Dahlin: Operating Systems: Principles and 

Practice, Chapter 14
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Virtual Machine Monitors

 Basic definitions

 Why would you want one?

 Structure

 How does it work?

 CPU

 MMU

 Memory

 Devices

 Network
• Acknowledgement:

Thanks to Steve 

Hand for some of 

the slides!
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What is a Virtual Machine Monitor?

 Virtualizes an entire (hardware) machine

 Contrast with OS processes

 Interface provided is “illusion of real hardware”

 Applications are therefore complete Operating Systems themselves

 Terminology: Guest Operating Systems

 Old idea: IBM VM/CMS (1960s)

 Recently revived: VMware, Xen, Hyper-V, kvm, etc.
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VMMs and hypervisors
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Some folks 

distinguish the 

Virtual Machine 

Monitor from the 

Hypervisor

(we won’t)

Creates 

illusion of 

hardware
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Why would you want one?

 Server consolidation (program assumes own machine)

 Performance isolation

 Backward compatibility

 Cloud computing (unit of selling cycles)

 OS development/testing

 Something under the OS: replay, auditing, trusted computing, 

rootkits
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Running multiple OSes on one machine

 Application 
compatibility
 I use Debian for 

almost everything, 
but I edit slides in 
PowerPoint

 Some people 
compile Barrelfish in 
a Debian VM over 
Windows 7 with 
Hyper-V 

 Backward 
compatibility
 Nothing beats a 

Windows 98 virtual 
machine for playing 
old computer games
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Server consolidation

 Many applications 

assume they have 

the machine to 

themselves

 Each machine is 

mostly idle

 Consolidate 

servers onto a 

single physical 

machine
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Resource isolation

 Surprisingly, 

modern OSes do 

not have an 

abstraction for a 

single application

 Performance 

isolation can be 

critical in some 

enterprises

 Use virtual 

machines as 

resource 

containersReal hardware
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Cloud computing

 Selling computing 

capacity on 

demand 

 E.g. Amazon EC2, 

GoGrid, etc.

 Hypervisors  

decouple 

allocation of 

resources (VMs) 

from provisioning

of infrastructure 

(physical 

machines)
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Operating System development

 Building and 

testing a new OS 

without needing 

to reboot real 

hardware

 VMM often gives 

you more 

information about 

faults than real 

hardware anyway

Real hardware
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Other cool applications…

 Tracing

 Debugging

 Execution replay

 Lock-step 

execution

 Live migration

 Rollback

 Speculation

 Etc….
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How does it all work?

 Note: a hypervisor is basically an OS

 With an “unusual API”

 Many functions quite similar: 

 Multiplexing resources

 Scheduling, virtual memory, device drivers

 Different: 

 Creating the illusion of hardware to “applications”

 Guest OSes are less flexible in resource requirements
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Hosted VMMs
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• VMware workstation

• Linux KVM

• Microsoft Hyper-V

• VirtualBox
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Hypervisor-based VMMs
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Examples:

• VMware ESX

• IBM VM/CMS

• Xen
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How to virtualize…

 The CPU (s)?

 The MMU?

 Physical memory?

 Devices (disks, etc.)?

 The Network

and?
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Virtualizing the CPU

 A CPU architecture is strictly virtualizable if it can be perfectly 

emulated over itself, with all non-privileged instructions 

executed natively

 Privileged instructions  trap

 Kernel-mode (i.e., the VMM) emulates instruction

 Guest’s kernel mode is actually user mode

Or another, extra privilege level (such as ring 1)

 Examples: IBM S/390, Alpha, PowerPC
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Virtualizing the CPU

 A strictly virtualizable processor can execute a complete native 

Guest OS

 Guest applications run in user mode as before

 Guest kernel works exactly as before

 Problem: x86 architecture is not virtualizable 

 About 20 instructions are sensitive but not privileged

 Mostly segment loads and processor flag manipulation
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Non-virtualizable x86: example

 PUSHF/POPF instructions

 Push/pop condition code register

 Includes interrupt enable flag (IF)

 Unprivileged instructions: fine in user space!

 IF is ignored by POPF in user mode, not in kernel mode

 VMM can’t determine if Guest OS wants interrupts disabled!

 Can’t cause a trap on a (privileged) POPF

 Prevents correct functioning of the Guest OS
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Solutions

1. Emulation: emulate all kernel-mode code in software

 Very slow – particularly for I/O intensive workloads

 Used by, e.g., SoftPC

2. Paravirtualization: modify Guest OS kernel

 Replace critical calls with explicit trap instruction to VMM

 Also called a “HyperCall” (used for all kinds of things)

 Used by, e.g., Xen

3. Binary rewriting:

 Protect kernel instruction pages, trap to VMM on first IFetch

 Scan page for POPF instructions and replace

 Restart instruction in Guest OS and continue

 Used by, e.g., VMware

4. Hardware support: Intel VT-x, AMD-V

 Extra processor mode causes POPF to trap
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Virtualizing the MMU

 Hypervisor allocates memory to VMs

 Guest assumes control over all physical memory

 VMM can’t let Guest OS to install mappings

 Definitions needed:

 Virtual address: a virtual address in the guest

 Physical address: as seen by the guest

 Machine address: real physical address 

As seen by the Hypervisor
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Virtual/Physical/Machine

Guest

Virtual AS

Guest

Physical AS

Machine

Memory

5

5

9

2

6

17
Guest 1:

Guest 2:
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MMU virtualization

 Critical for performance, challenging to make fast, especially 

SMP

 Hot-unplug unnecessary virtual CPUs

 Use multicast TLB flush paravirtualizations etc.

 Xen supports 3 MMU virtualization modes

1. Direct (“Writable”) pagetables

2. Shadow pagetables

3. Hardware Assisted Paging

 OS Paravirtualization compulsory for #1, optional (and very 

beneficial) for #2&3 
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Paravirtualization approach

 Guest OS creates page tables the hardware uses

 VMM must validate all updates to page tables

 Requires modifications to Guest OS

 Not quite enough…

 VMM must check all writes to PTEs

 Write-protect all PTEs to the Guest kernel

 Add a HyperCall to update PTEs

 Batch updates to avoid trap overhead

 OS is now aware of machine addresses

 Significant overhead!
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Paravirtualizing the MMU

 Guest OSes allocate and manage own PTs

 Hypercall to change PT base

 VMM must validate PT updates before use

 Allows incremental updates, avoids revalidation

 Validation rules applied to each PTE:

 1. Guest may only map pages it owns

 2. Pagetable pages may only be mapped RO

 VMM traps PTE updates and emulates, or ‘unhooks’ PTE page 

for bulk updates
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Writeable Page Tables : 1 – Write fault 

MMU

Guest OS

VMM

Hardware

page fault

first guest

write

guest reads

Virtual → Machine
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Writeable Page Tables : 2 – Emulate? 

Guest OS

VMM

Hardware

first guest

write

guest reads

Virtual → Machine

emulate?

yes

MMU
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Writeable Page Tables : 3 - Unhook

Guest OS

VMM

Hardware

guest writes

guest reads

Virtual → Machine
X

MMU
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Writeable Page Tables : 4 - First Use

Guest OS

VMM

Hardware

page fault

guest writes

guest reads

Virtual → Machine
X

MMU
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Writeable Page Tables : 5 – Re-hook

Guest OS

VMM

Hardware

validate

guest writes

guest reads

Virtual → Machine

MMU
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Writeable page tables require paravirtualization

Guest

Virtual AS

Machine

Memory
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Guest 1:

Guest 2:

Guests directly share 

machine memory
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Shadow page tables

 Guest OS sets up its own page tables

 Not used by the hardware!

 VMM maintains shadow page tables 

 Map directly from Guest VAs to Machine Addresses

 Hardware switched whenever Guest reloads PTBR

 VMM must keep V→M table consistent with Guest V→P table and 

it’s own P→M table

 VMM write-protects all guest page tables

 Write  trap: apply write to shadow table as well

 Significant overhead!
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Shadow page tables

Guest

Virtual AS

Guest

Physical AS

Machine

Memory
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Guest 2:

Shadow page 

table mappings

spcl.inf.ethz.ch

@spcl_eth

Shadow page tables

MMU

Guest OS

VMM

Hardware

accessed and 

dirty bits

guest writes

guest reads

Virtual → Guest-Physical

Virtual → Machine

updates

• Guest changes 
optional, but help 
with batching, 
knowing when to 
unshadow

• Latest algorithms 
work remarkably 
well
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Hardware support

 “Nested page tables”

 Relatively new in AMD (NPT) and Intel (EPT) hardware

 Two-level translation of addresses in the MMU

 Hardware knows about:

V→P tables (in the Guest)

P→M tables (in the Hypervisor)

 Tagged TLBs to avoid expensive flush on a VM entry/exit

 Very nice and easy to code to

 One reason kvm is so small

 Significant performance overhead…
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Memory allocation

 Guest OS is not expecting physical memory to change in size!

 Two problems: 

 Hypervisor wants to overcommit RAM

 How to reallocate (machine) memory between VMs

 Phenomenon: Double Paging

 Hypervisor pages out memory

 Guest OS decides to page out physical frame

 (Unwittingly) faults it in via the Hypervisor, only to write it out again
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Ballooning

 Technique to reclaim memory from a Guest

 Install a “balloon driver” in Guest kernel

 Can allocate and free kernel physical memory

Just like any other part of the kernel

 Uses HyperCalls to return frames to the Hypervisor, and have them 

returned

Guest OS is unware, simply allocates physical memory
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Ballooning: taking RAM away from a VM

Balloon

Guest physical address space

Balloon 

driver
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Ballooning: taking RAM away from a VM

1. VMM asks balloon driver 

for memory

2. Balloon driver asks 

Guest OS kernel for more 

frames

 “inflates the balloon”

3. Balloon driver sends 

physical frame numbers 

to VMM

4. VMM translates into 

machine address and 

claims the frames

Balloon

Guest physical address space

Balloon 

driver
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Ballooning: taking RAM away from a VM
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Ballooning: taking RAM away from a VM

1. VMM asks balloon driver 

for memory

2. Balloon driver asks 

Guest OS kernel for more 

frames

 “inflates the balloon”

3. Balloon driver sends 

physical frame numbers 

to VMM

4. VMM translates into 

machine addresses and 

claims the frames

Balloon

Guest physical address space

Physical 

memory 

claimed by 

balloon driver

Balloon 
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Returning RAM to a VM

1. VMM converts machine 

address into a physical 

address previously 

allocated by the balloon 

driver

2. VMM hands PFN to 

balloon driver

3. Balloon driver frees 

physical frame back to 

Guest OS kernel 

 “deflates the balloon”Balloon

Guest physical address space

Balloon 

driver
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Virtualizing Devices

 Familiar by now: trap-and-emulate

 I/O space traps

 Protect memory and trap

 “Device model”: software model of device in VMM

 Interrupts → upcalls to Guest OS

 Emulate interrupt controller (APIC) in Guest

 Emulate DMA with copy into Guest PAS

 Significant performance overhead!
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Paravirtualized devices

 “Fake” device drivers which communicate efficiently with VMM 

via hypercalls

 Used for block devices like disk controllers

 Network interfaces

 “VMware tools” is mostly about these

 Dramatically better performance!
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Networking

 Virtual network device in the Guest VM

 Hypervisor implements a “soft switch”

 Entire virtual IP/Ethernet network on a machine

 Many different addressing options

 Separate IP addresses

 Separate MAC addresses

 NAT

 Etc.
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Where are the real drivers?

1. In the Hypervisor

 E.g., VMware ESX

 Problem: need to rewrite device drivers (new OS)

2. In the console OS

 Export virtual devices to other VMs

3. In “driver domains”

 Map hardware directly into a “trusted” VM 

Device Passthrough

 Run your favorite OS just for the device driver

 Use IOMMU hardware to protect other memory from driver VM

4. Use “self-virtualizing devices”
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Xen 3.x Architecture

Xen Virtual Machine Monitor
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VM2
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GuestOS
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VM3

Safe HW IF

Front-End

Device Drivers

Thanks to Steve Hand for some of these diagrams
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Xen 3.x Architecture
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Remember this card?
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SR-IOV

 Single-Root I/O Virtualization

 Key idea: dynamically create new “PCIe devices”

 Physical Function (PF): original device, full functionality

 Virtual Function (VF): extra “device”, limited funtionality

 VFs created/destroyed via PF registers

 For networking:

 Partitions a network card’s resources

 With direct assignment can implement passthrough
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SR-IOV in action

SR-IOV NIC

Virtual ethernet bridge/switch, packet classifier

LAN

Physical function

PCIe

IOMMU

VMM

VM

PF driver

VSwitch
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SR-IOV in action
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SR-IOV in action
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Virtual ethernet bridge/switch, packet classifier

LAN

Virtual 

function
Physical function

PCIe

IOMMU

VMM

VM

VNIC drvr

VM

PF driver

VSwitch

spcl.inf.ethz.ch

@spcl_eth
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SR-IOV in action
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SR-IOV in action
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Self-virtualizing devices

 Can dynamically create up to 2048 

distinct PCI devices on demand!

 Hypervisor can create a virtual NIC for each VM

 Softswitch driver programs “master” NIC to demux packets to each virtual 

NIC

 PCI bus is virtualized in each VM

 Each Guest OS appears to have “real” NIC, talks direct to the real 

hardware
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Next week

Reliable storage

OS Research/Future


