spcl.inf.ethz.ch

ETHzurich 3 : FAUNS -y @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 11: Virtual Machine MonitoVr'§,__“,'-w,‘,;;;;-

. Two Computer Science researchers developed a
technique to hack a phone’s fingerprint sensor in 15 mins
with $500 worth of inkjet printer and conductive ink

The Computer Science researchers Kai Cao and Anil K Jain have developed a new technique for hacking

amobile device's fingerprint sensor in 15 mins with $500 worth of an inkjet printer and conductive ink.

This kind of attacks is very dangerous considering that it has been forecasted that 50% of smartphones

sold by 2019 will have an embedded fingerprint sensor.

It is also important to highlight that a growing number of features and applications will rely
on fingerprint recognition on mobile devices, for example, secure mobile payment and other

transactions.

The duo used a 300dpi scan of a fingerprint to produce aworking replica printed of a fingerprint in less

than 15 minutes, and the original image could be taken from a fingerprint sensor itself.

The computer experts explained that spoofing attacks still represent a serious problem for embedded

fingerprint systems.

“Spoofing refers to the process where the fingerprint image is acquired from a fake finger (or gummy finger)
rather than a live finger.” wrote the duo in the paper titled Hacking Mobile Phones Using 2D Printed

Fingerprints.

A first proof of concept attack of this kind was presented at Germany’s Chaos Computer Club in 2013 to
hack an iPhone 5s, in 2014 the German researcher Jan Krissler, aka Starbug, demonstrated at the same

hacking conference how to bypass Fingerprint biometrics using only a few photographs.

The principal limitations of the above techniques are the need to fabricate the spoof manually and the

fact that this process is time-consuming.

e . b S S AT spcl.inf.ethz.ch
E'HZUf/Ch »LV 4 Z\@I , @spcl_eth

Our small quiz

= True or false (raise hand)
= Spooling can be used to improve access times
= Buffering can cope with device speed mismatches
» The Linux kernel identifies devices using a single number
= From userspace, devices in Linux are identified through files
» Standard BSD sockets require two or more copies at the host
= Network protocols are processed in the first level interrupt handler
» The second level interrupt handler copies the packet data to userspace
» Deferred procedure calls can be executed in any process context
= Unix mbufs (and skbufs) enable protocol-independent processing
= Network I/O is not performance-critical
= NAPI’s design aims to reduce the CPU load
= NAPI uses polling to accelerate packet processing
» TCP offload reduces the server CPU load
» TCP offload can accelerate applications

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

Receive-side scaling

= (Observations:
= Too much traffic for one core to handle

= Cores aren’t getting any faster
= Must parallelize across cores

= Key idea: handle different flows on different cores
= But: how to determine flow for each packet?
= Can'’t do this on a core: same problem!
= Solution: demultiplex on the NIC
= DMA packets to per-flow buffers / queues
= Send interrupt only to core handling flow

. . , T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

Receive-side scaling

Flow table

pointer ¢
‘\) Flow state:
* Ring buffer

* Message-signalled interrupt

Received
packet

e |P src + dest
e TCP src + dest

Etc.
\ 4
Hash of
packet
header
v v
DMA Core to

address interrupt

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Receive-side scaling

= Can balance flows across cores
= Note: doesn’t help with one big flow!
= Assumes:
= n cores processing m flows is faster than one core
= Hence:
» Network stack and protocol graph must scale on a multiprocessor.

= Multiprocessor scaling: topic for later (see DPHPC class)

spcl.inf.ethz.ch

E'HZUf/Ch e : A5, f v : , @5pc|_eth

Virtual Machine Monitors

Literature: Barham et al.: Xen and the art of virtualization
and Anderson, Dahlin: Operating Systems: Principles and
Practice, Chapter 14 6

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

Virtual Machine Monitors

= Basic definitions

= Why would you want one?
= Structure

= How does it work?

= CPU

= MMU

= Memory

" Devices . Acknowledgement:

= Network Thanks to Steve
Hand for some of
the slides!

Xen

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

2

What is a Virtual Machine Monitor?

= Virtualizes an entire (hardware) machine
= Contrast with OS processes
» Interface provided is “illusion of real hardware”
= Applications are therefore complete Operating Systems themselves
» Terminology: Guest Operating Systems

= QOldidea: IBM VM/CMS (1960s)
= Recently revived: VMware, Xen, Hyper-V, kvm, etc.

o iy G , spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

2

VMMs and hypervisors

o o o o
o o o o
< || < < || < Some folks
distinguish the
Virtual Machine
Gues_t GUG‘S_t Monitor from the
operating operating Hypervisor
system system (we won't)
Creates
illusion of > VMM VMM
hardware Hypervisor
Real hardware

ETH:zurich

spcl.inf.ethz.ch
3y @spcl_eth

Why would you want one?

= Server consolidation (program assumes own machine)

= Performance isolation

= Backward compatibility

= Cloud computing (unit of selling cycles)

= (OS development/testing

= Something under the OS: replay, auditing, trusted computing,

rootkits

Red Hat Bugzilla - Bug 1202858 [UNRELEASED] restarting testing build of squid results in deleting all

testing bulld at = Last modified: 2015-03-26 10:02:22 EDT
files in hard-drive

Home | New | Search | Browse |

'- [?] | Reports | Requests | Help | New Account | Log In | Fergot Password

First Last Prev Next This bug is not in your last search results. Format For Printing - XML - Clone This Bug - Last Comment

Hug 1202858 - [UNRELEASED] restarting testing build of squid results in deleting all files in hard-
drive

Status: VERIFIED Reported: 2015-03-17 11:05 EDT by Swapna Krishnan
Modified: 2015-03-26 10:02 EDT (History)

Aliases: None .
- CC List: 31 users (show)

Product: Red Hat Enterprise Linux 6

Coempenent: squid (Show other bugs) See Also:

Version: 6.7 Fixed In Version: squid-3.1.23-5.el6
Hardware: x86_64 Linux Doc Type: Bug Fix
L.) Doc Text:
Priority urgent Severity urgent
. Clone Of:
Target Milestone: rc
Target Release: - Environment:
Assigned To: Pavel Simerda (pavlix) Last Closed:

QA Contact: Ondfej Ptak
Docs Contact:

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

Running multiple OSes on one machine

= Application
compatibility
= | use Debian for
almost everything,

but | edit slides in
PowerPoint

= Some people
compile Barrelfish in
a Debian VM over
Windows 7 with
Iy Hyper-V

App
App
App
App
App
App

Windows 7

= Backward
compatibility
= Nothing beats a
Windows 98 virtual

Real hardware machine for playing
old computer games

Hypervisor

ETH:zurich

spcl.inf.ethz.ch
/ ol L "y @spcl_eth

Server consolidation

Application

Application
Application

-

Windows 7

Windows 7

Hypervisor

Real hardware

= Many applications
assume they have
the machineto
themselves

= Each machineis
mostly idle

— Consolidate
servers onto a
single physical
machine

o e, ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

Resource isolation

= Surprisingly,
modern OSes do
not have an
abstraction for a
single application

= Performance
Isolation can be
critical in some
enterprises

= Use virtual
Fresource

Real hardware containers

Application
Application
Application

spcl.inf.ethz.ch

ETH:zurich ! e Sal (Y 7 A7 ¥ @spcl_eth

Cloud computing

= Selling computing
capacity on
demand
- [= E.g. Amazon EC2,
, [GoGrid, etc.

][] = Hypervisors
e ||[ETE decouple
ol | ITSRI allocation of
— © | i resources (VMs)
—©]© from provisioning
T of infrastructure
(physical
machines)

o ; , spcl.inf.ethz.ch
ETH zirich 2 S TN Y

2

Operating System development

= Building and
testing a new OS

i _ without needing
= THERS to reboot real
= oL =2
o w [[> » hardware
2 = VMM often gives
b you more
L i information about
e pen s faults than real
S hardware anyway

Hypervisor

Real hardware

. . : T ; spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

Other cool applications...

= Tracing
= Debugging
= S| 8 = Execution replay
O S| 8
1 = || £ = Lock-step
- o Q .
< < execution
= Live migration
1, = Rollback
VH oI = Speculation
= Etc....
Hypervisor
Real hardware

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

How does it all work?

= Note: a hypervisor is basically an OS
= With an “unusual AP/’
= Many functions quite similar:
= Multiplexing resources
= Scheduling, virtual memory, device drivers
= Different:
» Creating the illusion of hardware to “applications”
» Guest OSes are less flexible in resource requirements

ETH:zurich

spcl.inf.ethz.ch
/ il L "y @spcl_eth

Hosted VMMs

Application

ol o
all o
|| <

Application

Guest

operating

system

Examples:

* VMware workstation
* Linux KVM

* Microsoft Hyper-V

* VirtualBox

VMM

Host operating system

Real hardware

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

2

Hypervisor-based VMMs

Q
215 5|8 |82
G| = Examples:
« VMware ESX

((:I\C;Insrr?tl)e Guest Guest I)(Bel\r/: VMICMS
o) e?atin operating operating
p ° system system
system
VMM VMM VMM

Hypervisor

Real hardware

spcl.inf.ethz.ch

ETH:zurich ' X S /Y 7 _A\x o @spcl_eth

How to virtualize...

= The CPU (s)?

= The MMU?

= Physical memory?

= Devices (disks, etc.)?
= The Network

and?

ETHziirich S B FA, /\i"}ﬁz @ @spcl_ o
Virtualizing the CPU

= A CPU architecture is strictly virtualizable if it can be perfectly

emulated over itself, with all non-privileged instructions
executed natively

= Privileged instructions = trap
= Kernel-mode (i.e., the VMM) emulates instruction
» Guest’s kernel mode is actually user mode
Or another, extra privilege level (such as ring 1)

= Examples: IBM S/390, Alpha, PowerPC

ETHziirich S B FA, /\i"}ﬁz @ @spcl_ o
Virtualizing the CPU

= A strictly virtualizable processor can execute a complete native
Guest OS

= Guest applications run in user mode as before
» Guest kernel works exactly as before

= Problem: x86 architecture is not virtualizable ®
= About 20 instructions are sensitive but not privileged
» Mostly segment loads and processor flag manipulation

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

2

Non-virtualizable x86:. example

= PUSHF/POPF instructions

» Push/pop condition code register
* Includes interrupt enable flag (IF)

= Unprivileged instructions: fine in user space!
» IFisignored by POPF in user mode, not in kernel mode

= VMM can’t determine if Guest OS wants interrupts disabled!
= Can'’t cause a trap on a (privileged) POPF

» Prevents correct functioning of the Guest OS

_ .y ST > g spcl.inf.ethz.ch
ETH:zurich e /&&z' W @spcl_eth

2

Solutions

1. Emulation: emulate all kernel-mode code in software
= Very slow — particularly for 1/0 intensive workloads
= Used by, e.g., SoftPC

2. Paravirtualization: modify Guest OS kernel
» Replace critical calls with explicit trap instruction to VMM
» Also called a “HyperCall” (used for all kinds of things)
= Used by, e.g., Xen
3. Binary rewriting:
» Protect kernel instruction pages, trap to VMM on first IFetch
= Scan page for POPF instructions and replace
» Restart instruction in Guest OS and continue
= Used by, e.g., VMware

4. Hardware support: Intel VT-x, AMD-V
= Extra processor mode causes POPF to trap

. . : T ; spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

2

Virtualizing the MMU

= Hypervisor allocates memory to VMs
» Guest assumes control over all physical memory
» VMM can't let Guest OS to install mappings
= Definitions needed.:
= Virtual address: a virtual address in the guest
= Physical address: as seen by the guest
= Machine address: real physical address
As seen by the Hypervisor

o : T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

2

Virtual/Physical/Machine

Guest Guest Machine
Virtual AS Physical AS Memory
17
Guest 1:
2
5 —
6
. _/9
Guest 2:
5

o e, ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

MMU virtualization

Critical for performance, challenging to make fast, especially
SMP

» Hot-unplug unnecessary virtual CPUs

= Use multicast TLB flush paravirtualizations etc.
Xen supports 3 MMU virtualization modes
1. Direct (“Writable”) pagetables

2. Shadow pagetables

3. Hardware Assisted Paging

OS Paravirtualization compulsory for #1, optional (and very
beneficial) for #2&3

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

2

Paravirtualization approach

= (Guest OS creates page tables the hardware uses
* VMM must validate all updates to page tables
» Requires modifications to Guest OS
= Not quite enough...

= VMM must check all writes to PTEs
= Write-protect all PTEs to the Guest kernel
» Add a HyperCall to update PTEs
= Batch updates to avoid trap overhead
= OS is now aware of machine addresses
= Significant overhead!

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

Paravirtualizing the MMU

= Guest OSes allocate and manage own PTs
= Hypercall to change PT base
= VMM must validate PT updates before use
= Allows incremental updates, avoids revalidation
= Validation rules applied to each PTE:
= 1. Guest may only map pages it owns
= 2. Pagetable pages may only be mapped RO

= VMM traps PTE updates and emulates, or ‘unhooks’ PTE page
for bulk updates

ETH:zurich

spcl.inf.ethz.ch
/ / "y @spcl_eth

Writeable Page Tables : 1 — Write fault

guest reads

first guest

N Virtual — Machine
\/- \

write

...

page fault

..

.....................

..

VMM

..

Hardware
MMU

ETH:zurich

spcl.inf.ethz.ch
/ / "y @spcl_eth

Writeable Page Tables : 2 — Emulate?

guest reads

first guest
write

............

emulate?

...........................

N Virtual — Machine
\/- \

..

yes

VMM

...

Hardware
MMU

ETH:zurich

spcl.inf.ethz.ch
/ / "y @spcl_eth

Writeable Page Tables : 3

guest reads

- Unhook

N Virtual — Machine
guest Writes\ X \ -

...

..

..

VMM

..

MMU

Hardware

o : T spcl.inf.ethz.ch
ETH:zurich e Tt /ﬁ&z W @spcl_eth

Writeable Page Tables : 4 - First Use

guest reads

guest Writes\

%tual — Machine

page fault

VMM

..

Hardware

MMU

ETH:zurich

spcl.inf.ethz.ch
/ / "y @spcl_eth

Writeable Page Tables : 5

guest reads

— Re-hook

N Virtual — Machine
guest Writes\ NN -

...

..

validate

..

VMM

..

MMU

Hardware

. . : T ; spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

2

Writeable page tables require paravirtualization

Guest Machine
Virtual AS Memory

17

Guest 1:

Guests directly share
machine memory

Guest 2:

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

2

Shadow page tables

Guest OS sets up its own page tables
* Not used by the hardware!

VMM maintains shadow page tables

= Map directly from Guest VAs to Machine Addresses

= Hardware switched whenever Guest reloads PTBR

VMM must keep V—M table consistent with Guest V—P table and
it’'s own P—M table

= VMM write-protects all guest page tables

= Write = trap: apply write to shadow table as well

= Significant overhead!

spcl.inf.ethz.ch

ETH:zurich e Sal / 7 _Ax 9 @spcl_eth

Shadow page tables

Guest Guest Machine
Virtual AS Physical AS Memory
17
Guest 1: /
/ \
5 / Shadow page

table mappings

/ 6

Guest 2: /

iy

o .y S ‘»a;“ e T ST spcl.inf.ethz.ch
ETH:zurich e /&&z' W @spcl_eth

Shadow page tables

guest reads

\ / %tual — Guest-Physical
g
Guest OS

...

guest writes

accessed an
dirty bits Virtual — Machine

- Guest changes AN

optional, but help \
with batching,

knowing when to
unshadow VMM

« Latest algorithms
work remarkably MMU Hardware

well

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

2

Hardware support

“Nested page tables”
= Relatively new in AMD (NPT) and Intel (EPT) hardware
Two-level translation of addresses in the MMU
= Hardware knows about:
V—P tables (in the Guest)
P—M tables (in the Hypervisor)
» Tagged TLBs to avoid expensive flush on a VM entry/exit

Very nice and easy to code to
= One reason kvm is so small

Significant performance overhead...

o iy G , spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

2

Memory allocation

= Guest OSis not expecting physical memory to change in size!
= Two problems:

= Hypervisor wants to overcommit RAM

= How to reallocate (machine) memory between VMs
= Phenomenon: Double Paging

= Hypervisor pages out memory

= Guest OS decides to page out physical frame

= (Unwittingly) faults it in via the Hypervisor, only to write it out again

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Ballooning

= Technique to reclaim memory from a Guest

= Install a “balloon driver” in Guest kernel
= Can allocate and free kernel physical memory
Just like any other part of the kernel

= Uses HyperCalls to return frames to the Hypervisor, and have them
returned

Guest OS is unware, simply allocates physical memory

. . : T ; spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

2

Ballooning: taking RAM away from a VM

Guest physical address space

Balloo

Balloon
driver

ETH:zurich

Ballooning: taking RAM away from a VM

Guest physical address space

Balloo

Balloon
river

1.

spcl.inf.ethz.ch
/ / e "y @spcl_eth

2

VMM asks balloon driver
for memory

ETH:zurich

Ballooning: taking RAM away from a VM

Guest physical address space

Balloon

Balloon
driver

spcl.inf.ethz.ch
/ il L "y @spcl_eth

2

VMM asks balloon driver
for memory

Balloon driver asks
Guest OS kernel for more
frames

“inflates the balloon”

ETH:zurich

Ballooning: taking RAM away from a VM

Guest physical address space

Physical
memory
claimed by
balloon driver

Balloon

Balloon
driver

1.

2.

3.

spcl.inf.ethz.ch
/ 7 "y @spcl_eth

2

VMM asks balloon driver
for memory

Balloon driver asks
Guest OS kernel for more
frames

“inflates the balloon”
Balloon driver sends

physical frame numbers
to VMM

ETH:zurich

spcl.inf.ethz.ch
/ "y @spcl_eth

Ballooning: taking RAM away from a VM

Guest physical address space

Physical
memory
claimed by
balloon driver

Balloon

Balloon
driver

1.

2.

3.

4.

VMM asks balloon driver
for memory

Balloon driver asks
Guest OS kernel for more
frames

= “inflates the balloon”

Balloon driver sends
physical frame numbers
to VMM

VMM translates into
machine addresses and
claims the frames

. . < cagys PG > ya) spcl.inf.ethz.ch
ETH:zurich e /&&z' W @spcl_eth

Returning RAM to a VM

| 1. VMM converts machine
Guest physical address space address into a physical

address previously
allocated by the balloon
driver

2. VMM hands PFN to
balloon driver

3. Balloon driver frees
physical frame back to
Guest OS kernel

Balloo = “deflates the balloon”

Balloon
driver

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

Virtualizing Devices

= Familiar by now: trap-and-emulate

» |/O space traps

= Protect memory and trap

= “Device model”: software model of device in VMM
= Interrupts — upcalls to Guest OS

= Emulate interrupt controller (APIC) in Guest

= Emulate DMA with copy into Guest PAS

= Significant performance overhead!

. : : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

L —

Paravirtualized devices

“Fake” device drivers which communicate efficiently with VMM
via hypercalls

= Used for block devices like disk controllers
= Network interfaces

» “VMware tools” is mostly about these

= Dramatically better performance!

. . : T ; spcl.inf.ethz.ch
ETHzurich il e o /‘ﬁ&l W @spcl_eth

2

Networking

= Virtual network device in the Guest VM
= Hypervisor implements a “soft switch”

= Entire virtual IP/Ethernet network on a machine
= Many different addressing options

= Separate IP addresses

» Separate MAC addresses
= NAT

= Etc.

o e ST i spcl.inf.ethz.ch
ETH ziirich B TN Y

Where are the real drivers?

1. Inthe Hypervisor
= E.g., VMware ESX
= Problem: need to rewrite device drivers (new OS)
2. Inthe console OS
= EXxport virtual devices to other VMs
3. In “driver domains”
» Map hardware directly into a “trusted” VM
Device Passthrough
= Run your favorite OS just for the device driver
= Use IOMMU hardware to protect other memory from driver VM

4. Use “self-virtualizing devices”

ETH:zurich

spcl.inf.ethz.ch

Xen 3.x Architecture

LT

VMO VM1 VM2 VM3
Device Unmodified Unmodified | Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP Unmodified
(XenLinux) (XenLinux) GuestOS GuestOS
(XenLinux) (WIinXP)
Native
Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers
| Control IF ||‘ Safe HW IF || Event Channel || Virtual CPU || Virtual MMU |

\ Xen Virtual Machine Monitor

¥

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

3y @spcl_eth

Thanks to Steve Hand for some of these diagrams

ETH:zurich

spcl.inf.ethz.ch

Xen 3.x Architecture

LT

VMO VM1 VM2 VM3
Device Unmodified Unmodified || Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP Unmodified
(XenLinux) (XenLinux) GuestOS GugstOS
Virtual switch (XenLinux) (WIinXP)

Native

Device Front-End Front-End Front-End

Drivers Device Drivers Device Drivers Device Drivers

\

| \
| cControlIF || SafeHWIF || Event Channel || Virtual CPU || Virtual MMU |

\ Xen Virtual Machine Monitor

¥

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

3y @spcl_eth

Thanks to Steve Hand for some of these diagrams

ETH:zurich

Xen 3.x Architecture

I Faa
VMO VM1 VM2 VM3
Device Unmodified Unmodified || | Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP | | Unmodified
(XenLinux) (XenLinux) GuestOS GuestOS
Virtual switch (XenLinux) (WIinXP)
1T Native
Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers
- 4 —4 T 1
| ControlIF || SafeHWIF || Event Channel | | Virtual CPU | | Virtual MMU |
Xen Virtual Machine Monitor
¥
Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch

ETH:zurich % 7 A7 ¥ @spcl_eth

Remember this card?

o Sy G : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

SR-10V

= Single-Root I/O Virtualization

= Key idea: dynamically create new “PCle devices”
= Physical Function (PF): original device, full functionality
= Virtual Function (VF): extra “device”, limited funtionality
» VFs created/destroyed via PF registers

= For networking:
» Partitions a network card’s resources
= With direct assignment can implement passthrough

o Sy G : spcl.inf.ethz.ch
ETH ziirich 2 S TN Y

SR-IOV In action

VM

VSwitch
1

PF driver
AN

VMM

IOMMU

PCle

a 2

Physical function

Virtual ethernet bridge/switch, packet cIass%ier
SR-I0V NIC A

ETH:zurich

spcl.inf.ethz.ch

SR-IOV In action

VM VM

b{ VSwitch
VNIC drvr PF driver

A ' S

VMM
IOMMU
PCle
S 2

Physical function

Virtual ethernet bridge/switch, packet cIass%ier

SR-IOV NIC

i\

3y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch

SR-IOV In action

VM

VM

b‘ VSwitch

VNIC drvr PF driver

A

A

VMM

IOMMU

PCle

a 2

Virtual
function

Physical function

IVirtual ethernet bridge/switch, packet class%ier

SR-IOV NIC

i\

3y @spcl_eth

. . — P (T spcl.inf.ethz.ch
ETH:zurich e /&&,- W @spcl_eth

SR-IOV In action

VM VM VM
b‘ VSwitch
VF driver VNIC drvr PF driver
' S A ' S
VMM
IOMMU
PCle
2 S 2
Virtual

function Physical function

IVirtual ethernet bridge/switch, packet class%ier
SR-I0V NIC A

ETH:zurich

spcl.inf.ethz.ch

SR-IOV In action

VM VM VM VM
b‘ VSwitch
VFE driver VF driver VNIC drvr PF driver
A A A A
VMM
IOMMU
PCle
h 2 h 2)
V|rtqal V|rtu_al Physical function
function function

IVirtual ethernet bridge/switch, packet class%ier

SR-IOV NIC

*

3y @spcl_eth

ETH:zurich

spcl.inf.ethz.ch

SR-IOV In action

VM VM VM VM VM
&‘ VSwitch
VFE driver VF driver VF driver VNIC drvr PF driver
A A A A A
VMM
IOMMU
HCle
h 2 h 2 h 2)
Virtual Virtual Virtual . .
)) . Physical function
function function function

IVirtual ethernet bridgglswitch, packet class%ier

SR-IOV NIC

*

3y @spcl_eth

o« : T ; spcl.inf.ethz.ch
ETHzirich N Y 7 Ax o @spcl_eth

Self-virtualizing devices

= Can dynamically create up to 2048
distinct PCl devices on demand!

= Hypervisor can create a virtual NIC for each VM

= Softswitch driver programs “master” NIC to demux packets to each virtual
NIC

= PCI bus is virtualized in each VM

» Each Guest OS appears to have “real” NIC, talks direct to the real
hardware

spcl.inf.ethz.ch

ETH:zurich ' 7 (Y 7 A7 ¥ @spcl_eth

Next week

Reliable storage
OS Research/Future™

