Operating Systems and Networks

Networks Part 2: Physical Layer

Adrian Perrig Network Security Group ETH Zürich

Overview

- Important concepts from last lecture
 - Statistical multiplexing, statistical multiplexing gain
 - OSI 7 layer model, interfaces, protocols
 - Encapsulation, demultiplexing
- · This lecture
 - Socket programming overview
 - Physical layer
- Online lecture videos: http://computernetworks5e.org

2

Network-Application Interface

- Defines how apps use the network
 - Lets apps talk to each other via hosts; hides the details of the network

Motivating Application

Simple client-server connection setup

Motivating Application (2)

- Simple client-server connection setup
 - Client app sends a request to server app
 - Server app returns a (longer) reply
- This is the basis for many apps!
 - File transfer: send name, get file (§6.1.4)
 - Web browsing: send URL, get page
 - Echo: send message, get it back
- Let's see how to write this app ...

Socket API

- Simple abstraction to use the network
 - The network service API used to write all Internet applications
 - Part of all major OSes and languages; originally Berkeley (Unix) ~1983
- Supports two kinds of network services
 - Streams: reliably send a stream of bytes
 - $\boldsymbol{-}$ Datagrams: unreliably send separate messages. (Ignore for now.)

Socket API (3) Primitive Meaning SOCKET Create a new communication endpoint BIND Associate a local address with a socket LISTEN Announce willingness to accept connections; give queue size ACCEPT Passively wait for an incoming connection CONNECT Actively attempt to establish a connection SEND Send some data over the connection RECEIVE Receive some data from the connection CLOSE Release the connection

Server Program (outline)

socket() // make socket
getaddrinfo() // for port on this host
bind() // associate port with socket
listen() // prepare to accept connections
accept() // wait for a connection [block]
...
recv() // wait for request
...
send() // send the reply

// eventually disconnect

close()

Where we are in the Course

 Beginning to work our way up starting with the Physical laver

> Application Transport Network Link Physical

> > 1.4

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry analog signals
 - We want to send digital bits

15

Topics

- 1. Properties of media
 - Wires, fiber optics, wireless
- 2. Simple signal propagation
 - Bandwidth, attenuation, noise
- 3. Modulation schemes
 - Representing bits, noise
- 4. Fundamental limits
 - Nyquist, Shannon

16

Simple Link Model

- We'll end with an abstraction of a physical channel
 - Rate (or bandwidth, capacity, speed) in bits/second
 - <u>Delay</u> or <u>Latency</u> in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Message Latency

- Latency L: delay to send a message over a link
 - <u>Transmission delay</u>: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

- Propagation delay: time for bits to propagate across the wire
 - P-delay = Length / speed of signals = Length / $\frac{2}{3}c$ = D seconds
- Combining the two terms we have: L = M/R + D

Metric Units

• The main prefixes we use:

Prefix	Ехр.	prefix	exp.
K(ilo)	10 ³	m(illi)	10 ⁻³
M(ega)	10 ⁶	μ(micro)	10 ⁻⁶
G(iga)	10 ⁹	n(ano)	10 ⁻⁹

- Use powers of 10 for rates, 2 for storage or data size
- 1 Mbps = 1,000,000 bps, 1 KB = 2¹⁰ bytes
- "B" is for bytes, "b" is for bits

Latency Examples

- "Dialup" with a telephone modem:
 - D = 5 ms, R = 56 kbps, M = 1250 bytes
- · Broadband cross-country link:
 - D = 50 ms, R = 10 Mbps, M = 1250 bytes

20

Latency Examples (2)

- "Dialup" with a telephone modem:
 D = 5 ms, R = 56 kbps, M = 1250 bytes
 L = 5 ms + (1250x8)/(56 x 10³) sec = 184 ms!
- Broadband cross-country link:
 D = 50 ms, R = 10 Mbps, M = 1250 bytes
 L = 50 ms + (1250x8) / (10x 10⁶) sec = 51 ms
- A long link or a slow rate means high latency
 - Often, one delay component dominates

21

Bandwidth-Delay Product

Messages take space on the wire!

 The amount of data in flight is the <u>bandwidth-delay (BD)</u> <u>product</u>

$$BD = R \times D$$

- Measure in bits, or in messages
- Small for LANs, big for "long fat" pipes

22

Bandwidth-Delay Example

- Fiber at home, cross-country R=40 Mbps, D=50 ms
 - BD = $40 \times 10^6 \times 50 \times 10^{-3}$ bits
 - = 2000 Kbit
 - = 250 KB
- That's quite a lot of data "in the network"!

How "Long" is a Bit?

- Interesting trivia: how "long" is the representation of a bit on a wire?
- Considering a fiber optic cable
 - Signal propagation speed: 200'000'000 m/s
 - Sending rate: 1Gbps \Rightarrow duration of sending one bit: 1ns
 - Bit "length": 1ns * 200'000'000 m/s = 0.2 m
 - "Length" of a 1Kb packet: 0.2m * 8 * 2^{10} = 1.6km

Types of Media (§2.2, 2.3)

- Media propagate signals that carry bits of information
- We'll look at some common types:
 - Wires
 - Fiber (fiber optic cables)
 - Wireless

Wires - Twisted Pair

- Very common; used in LANs and telephone lines
 - Twists can reduce radiated signal or reduce effect of external interference signal

Wires - Coaxial Cable

· Also common. Better shielding for better performance

• Other kinds of wires too: e.g., electrical power (§2.2.4)

Fiber

- Long, thin, pure strands of glass
 - Enormous bandwidth (high speed) over long distances

Fiber (2)

• Two varieties: multi-mode (shorter links, cheaper) and single-mode (up to ~100 km)

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) interfere at a receiver; need to

• Microwave, e.g., 3G, and unlicensed (ISM: Industry Science Medicine) frequencies, e.g., WiFi, are widely used for computer networking

| SM band | SM band

Signals (§2.2, 2.3)

• Analog signals encode digital bits. We want to know what happens as signals propagate over media

Signal

10110...

10110

Signals over a Wire

- What happens to a signal as it passes over a wire?
 - 1. The signal is delayed (propagates at %c)
 - 2. The signal is attenuated
 - 3. Frequencies above a cutoff are highly attenuated
 - 4. Noise is added to the signal (later, causes errors)

EE: Bandwidth = width of frequency band, measured in Hz

CS: Bandwidth = information carrying capacity, in bits/sec

Signals over Fiber

- Light propagates with very low loss in three very wide frequency bands
 - Use a carrier to send information

Signals over Wireless

 Travel at speed of light, spread out and attenuate faster than 1/dist²

39

Signals over Wireless (2)

Multiple signals on the same frequency interfere at a receiver

40

Signals over Wireless (3)

 Interference leads to notion of <u>spatial reuse</u> (of same freq.)

Signals over Wireless (4)

- Various other effects too!
 - Wireless propagation is complex, depends on environment
- Some key effects are highly frequency dependent
 - E.g., <u>multipath</u> at microwave frequencies

Modulation (§2.5)

- We've talked about signals representing bits. How, exactly?
 - This is the topic of modulation

A Simple Modulation

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Many Other Schemes

- Can use more signal levels, e.g., 4 levels is 2 bits per symbol
- Practical schemes are driven by engineering considerations
 - E.g., clock recovery

46

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

1 0 0 0 0 0 0 0 0 0 ... 0

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Clock Recovery - 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - $-0000 \Rightarrow 11110,0001 \Rightarrow 01001,$ $1110 \Rightarrow 11100, ... 1111 \Rightarrow 11101$
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI, $\S 2.5.1)$

Clock Recovery — 4B/5B (2) • 4B/5B code for reference: - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101 • Message bits: 1 1 1 1 0 0 0 0 0 0 0 1 Coded Bits: 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 Signal:

Passband Modulation

- What we have seen so far is <u>baseband</u> modulation for wires
 - Signal is sent directly on a wire
- These signals do not propagate well on fiber / wireless
 - Need to send at higher frequencies
- <u>Passband</u> modulation carries a signal by modulating a carrier

Passband Modulation (2)

 Carrier is simply a signal oscillating at a desired frequency:

- · We can modulate it by changing:
 - Amplitude, frequency, or phase

51

Fundamental Limits (§2.1)

- How rapidly can we send information over a link?
 - Nyquist limit (~1924)
 - Shannon capacity (1948)
- Practical systems are devised to approach these limits

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise strength (N)
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Nyquist Limit

• The maximum symbol rate is 2B

1010101010101010101

 Thus if there are V signal levels, ignoring noise, the maximum bit rate is:

R = 2B log₂V bits/sec

Claude Shannon (1916-2001)

- · Father of information theory
 - "A Mathematical Theory of Communication", 1948
- Fundamental contributions to digital computers, security, and communications

Shannon Capacity

- How many levels we can distinguish depends on S/N
 - Or SNR, the Signal-to-Noise Ratio
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:
 - $-SNR_{dB} = 10log_{10}(S/N)$

Shannon Capacity (2)

 Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

 $C = B \log_2(1 + S/N)$ bits/sec

58

Wired/Wireless Perspective

- · Wires and Fiber
- Engineer SNR for data rate
- Engineer link to have requisite SNR and B
- →Can fix data rate
- Wireless

Adapt data rate to SNR

- Given B, but SNR varies greatly, e.g., up to 60 dB!
- →Can't design for worst case, must adapt data rate

Putting it all together - DSL

- DSL (Digital Subscriber Line, see §2.6.3) is widely used for broadband; many variants offer 10s of Mbps
 - Reuses twisted pair telephone line to the home; it has up to
 2 MHz of bandwidth but uses only the lowest ~4 kHz

DSL (2)

- DSL uses passband modulation (called OFDM §2.5.1)
 - Separate bands for upstream and downstream (larger)
 - Modulation varies both amplitude and phase (called QAM)
 - High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

ADSL2: Voice Up to 1 Mbps Up to 12 Mbps

| D-4 | Freq | 26 - 138 | 143 kHz to 1.1 MHz |
| Telephone Upstream Downstream
