iri ek T \;«a‘\ ‘.,‘.~ 3 e spcl.inf.ethz.ch
ETH:zurich : 4 B S W @spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC.: Linearizability

Recitation session

- -..‘»

(:i’

,:l"




S - ‘ \ Lo 5 spcl.inf.ethz.ch
ETHzirich g™ A o0 W<
Systems @ ETH zunin -

Linearizability vs Sequential Consistency

= Sequential Consistency?
» Method calls should appear to happen in a one-at-time, sequential order
= Method calls should appear to take effect in program order

= Linearizability?
= Method calls should appear to happen in a one-at-time, sequential order

= Each method call should appear to take effect instantaneously at some moment between its
invocation and response

Invocation Methodjcall Response

time >
= Linearizability > Sequential Consistency
= Every linearizable execution is sequentially consistent, but not vice versa




o S~ i > ) spcl.inf.ethz.ch
ETHzurich -i- Y 57 < /&&J 9 @spcl_eth

Systems @ ETH s

Linearizability vs Sequential Consistency

= Both care about giving an illusion of a single copy
» From the outside observer, the system should behave as if there’s only a single copy

= Linearizability cares about time
= Sequential consistency cares about program order

= Properties of linearizability
= Local: A system is linearizable iff each individual object is linearizable.
Composability
= Non-blocking: one method is never forced to wait to synchronize with another
Does not impact on concurrency



- . e N spcl.inf.ethz.ch
ETHzurich -i- : ' /\df?,&) 9 @spcl_eth

Systems @ ETH s

Linearizability vs Sequential Consistency

< A.write(1) >

< B.write(2) > <B.read(): 1>

time >

= |s it sequentially consistent?
= Yes, we can reorder B.write(2) and A.write(1)

= |sitlinearizable?
= No, the method can “happen” only between its invocation and response



- . . s Iy spcl.inf.ethz.ch
ETHzurich -i- ¥ 52 : /\df?,&) 9 @spcl_eth

Systems @ ETH s
g .

= History

= Afinite sequence of method invocation and response events
= Thread projection — H|A

= Subsequence of all events in H whose thread names are A
= Sequential history

» The first event is an invocation

= Each invocation, except possibly the last, is immediately followed by a matching response
= Concurrent history

= Methods can overlap
= Well-formed history

= |f each thread subhistory (thread projection) is sequential



S - ‘ \ oo R spcl.inf.ethz.ch
ETHzurich -i- o A /&&J 9 @spcl_eth

Systems @ ETH s

Linearizability — Formal definition

= A method call mO precedes a method call m1in history H if mO finishes before m1 started

= mQ0’s response events occurs before m1’s invocation event
A.write(1)
< B.write(2) >

time >
= Two histories H and H’ are equivalent if for every thread A, HIA = H’|A

= Given an history H, an extension of H is an history constructed by appending response to
zero or more pending invocation in H

= Given an history H, complete(H) is the subsequence of H consisting of all the matching
iInvocations and responses.

= A sequential history His legal if each object subhistory is legal for that object




o S~ i > ) spcl.inf.ethz.ch
ETHzurich -i- Y 57 < /&&J 9 @spcl_eth
Systems @ ETH s

L —

Linearizability — Formal definition

A history H is linearizable if it has an extension H’ and there is a legal sequential history S
such that

= L1: complete(H’) is equivalent to S
= L2:if method call mO precedes method call m1 in H, then the same is true in S

= |f two method calls overlap, we are free to order them in any convenient way
= By setting the linearization point



.. o PO spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< g-enq(x) > <Q-deq0:y>
< g-enq(y) > <Q-deq():><>

time >

Is this linearizable?




ETH:zurich -i- : : ~ spcl.inf.ethz.ch

Systems @ ETH s

y @spcl_eth

Examples

<:q.enq(x> > < e >
<: qenq(}/) > <qdeq() x> ::

timel

Is this linearizable? Yes



.. o PO spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< g.enq(x) > <Q-deqoi>’>
=)

time >

Is this linearizable?

10



ETHzurich -E-

Systems @ ETH s

Examples

:q.enq(x)

< q.deq():)y >
|
< qenq(x’) >:
|

time

Is this linearizable? No

spcl.inf.ethz.ch

9 @spcl_eth

11



.. o PO spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< g-enq(x) > <Q-deq0:y>
< g-enq(y) > < Q-deq():X>

time >

Is this linearizable?

12



.. o PO spcl.inf.ethz.ch
ETHziirich -i' ~ Y YV Nx g @spel_eth
5) e

ystems @ ETH e

Examples

< st > < =T >
|:< qenq(y)'.l> <cli.dec|%()ix>

time |

Is this linearizable? Yes

13



- . , A spcl.inf.ethz.ch
ETH:zurich -E- : () T 2T o @spcl_eth
5) e

ystems @ ETH e

Examples

< q.enq(x):> < q.deh(): y >
! !
J J
<:q.en§|(y) > < h.deq():'!x >
R i I
| | |

time |

)

Is this linearizable? Yes, multiple orders



- . , A spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< write(0) > < read(): 1 >< write(2) >
< write(1) > < read(): O >

time

Is this linearizable?



ETHzurich -E-

ystems @ ETH e

Examples

{ write(1) happened somewhere before this point }

|
< write(0) > < read(): 1 >:< write(2) >
|
|
write(1) | read(): O

|
time

Is this linearizable? No

spcl.inf.ethz.ch

9 @spcl_eth



- . , A spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< write(0) > < read(): 1 >< write(2) >
< write(1) > < read(): 1 >

time

Is this linearizable?



ETHzurich -E-

ystems @ ETH e

Examples

{ write(1) happened somewhere before this point }

|
< write(0) > < read(): 1 >:< write(2) >
|
|
write(1) | read(): 1

|
time

Is this linearizable? No

spcl.inf.ethz.ch

9 @spcl_eth



- . , A spcl.inf.ethz.ch
ETHziirich -i' ~ T A g ospolenn

ystems @ ETH e

Examples

< write(0) > < write(2) >
< write(1) > < read(): 1 >

time

Is this linearizable?



ETHzurich -E-

ystems @ ETH e

Examples

< write(2) >

time

|
|
|
!
write(1) : > < read(): 1 >
!
| )

Is this linearizable? Yes

spcl.inf.ethz.ch

9 @spcl_eth



