ri T .-“-’»"\,"“.‘:%:?},‘,-f”‘.i‘;'f“:: QP My spcl.inf.ethz.ch
ETHzurich L. ¥ @spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Balance Principles & Scheduling

Recitation session

_ spcl.inf.ethz.ch
/ U= y @spcl_eth

ETHzurich -i-

Systems @ ETH s

Deriving a Balance Principle

Concept of balance: a computation running on some machine is efficient if the compute-time
dominates the 1/O time. [Kung, 1986]

Slow memory

-

1
7
(]

= Deriving a balance principle:
= Algorithmically analyze the parallelism
= Algorithmically analyze the I/O behavior
(i.e., number of memory transfers)
= Combine these two analyses with a cost
model for an abstract machine.

a = latency

Transaction size
B = bandwidth

+ =L words

-
7’ S ————

Fast

4

~
‘\

memory
(Capacity = Z words)

Clhlle

C, = flops / time / core

cores

W(n) = work (total ops)

Goal: say precisely and analytically how

= Changes to the architecture might affect the scaling of a computation
= |dentify what classes of computation might execute efficiently on a given architecture

Czechowski, Kent, et al. "Balance Principles for Algorithm-Architecture Co-Design." HotPar 11 (2011): 9-9.

. . o r(E spcl.inf.ethz.ch
ETHiirich -i' Y YV N o ‘@spel eth

Systems @ ETH s

The DAG Model

é Strand: chain of serially executed instructions.

H Strands are partially ordered with dependencies

Sync nodes are where

Spawn nodes have two
the control flow merges

SUCCessSOors

- . o PO spcl.inf.ethz.ch
ETHiirich -i' ~ Y YV N o ‘@spel eth

Systems @ ETH s

The DAG Model

Given an input size n:
« The work W(n) is the total number of strands.
« W(n)=13
 The depth D(n) is the length of the critical path
(measured in number of strands).
» Defines the minimum execution time of the computation
« D(n)=8

The ratio % measures the average available parallelism

- . , iy spcl.inf.ethz.ch
ETHzurich -E- : ' /\df?:i) 9 @spcl_eth

Systems @ ETH s

Analyzing I/Os

= We use the classical external memory model

= Two level memory
= One largeé&slow
L Ly Slow memory
» The other small&fast (capacity: Z words) -4
It can be an automatic cache or a software-controlled
scratchpad
= Work operations can be performed only on data -
In fast memory

= Slow<->Fast memory transfers occur in blocks

-

1
7
(1

a = latency
B = bandwidth

Transaction size
+ =L words

,-
’ ‘--..__..,.

4

Fast

memory
(Capacity = Z words)

G n B n cores

of L words W(n) = work (total ops) C, = flops / time / core
= Qz.(n)is the number of L-sized transfers
between slow and fast memory for an input of
sizen
w(n)

Goal is to optimize the computational intensity:

Qzr(n)-L

ETH:zurich -E- : : '.T ey spcl.inf.ethz.ch

: 7 7T o @spcl_eth
Systems @ ETH e —

Architecture-Specific Cost Model

= We need to introduce the time
» This depends on the specific architecture
= pcores
= Each core can deliver C, operations per unit time
= Thetimeto transfer m- L words is:

Slow memory

Transaction size
+ = L words

o = latency
B = bandwidth

Fast
n . memory
@+ m L/ﬁ (Capacity = Z words)
N 4 iS the Iatency G n cores
= [is the bandwidth in units of words per time W(n) = work (total ops) C, = flops / time / core

D(n) = depth

= The best possible compute time is (Brent’s theorem):

Teomp(n; p, Co) = (D (n) + W}En)) | 010

- . , iy spcl.inf.ethz.ch
ETHziirich -i‘ - - (Y Y Nx g @spol eth

Systems @ ETH s

Architecture-Specific Cost Model

= Qz.(n)is for the sequential case

= We need to move to the parallel case Q,.z(n)
= We can bound @,z (n) in terms of Qz (1)
Blelloch et al, 2009, need to select a specific scheduler
= Compute it directly

= Assumptions:
= the latency is accounted for each node in the critical path

Slow memory

Transaction size
+ = L words

o = latency
B = bandwidth

Fast

memory
(Capacity = Z words)

G n E ﬂ cores

= all the Q,.z . (n) are aggregated and pipelined W(n) = work (total ops) C, = flops / time / core
by the memory system

Hence they are delivered at the peak bandwidth

= We can estimate the memory cost as:

Qp.z,(n) L
b

Tmem('nJSPa ZJ L) Oé, 6) — ()ZD(TL)+

- . , A) spcl.inf.ethz.ch
ETHziirich -i' - (Y Y Nx g @spol eth

Systems @ ETH s

The Balance Principle

= The balance principle follows by imposing Tyem < Tcomp

Tmem(n;p, Z, L, o,) = CI'D(n)—|—Qp’Z’Lﬁ() Teomp(n;p, Co) = (D(n) — 25)) &
C @ L W é el _&o‘é pea;k floating=point performance
PO 114280 W 114 B .|
B Q/D QL W/D 2
v W—/} v \—v—/ § ::; :2
balance \ Little’s intensity \ Amdahl’s) f 4

Operational Intensity (Flops/Byte)

ETH:zurich -E- . ey ~ spclinf.ethz.ch

i 3y @spcl_eth
Systems @ ETH e —

Scheduling

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
X = spawn fib(n-1);
y = fib(n-2);
sync;
return (x+y);

1 5 threads

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

- . o PO spcl.inf.ethz.ch
ETH_iirich -i' | Y T A @spel et

ystems @ ETH e

Scheduling

The DAG unfolds dynamically:

1 5 threads

10

- . , iy spcl.inf.ethz.ch
ETH:zurich] -E- : ' /@J 9 @spcl_eth

ystems @ ETH ..

Greedy Scheduler

: Do as much as possiblein
every ste
y P _ _ executed
. A node is ready if all
predecessors have been executed
ready

- . e N spcl.inf.ethz.ch
ETHzurich -i- : ' /\df?,&) 9 @spcl_eth

Systems @ ETH s

Greedy Scheduler

: Do as much as possiblein
every step

. A node is ready if all
predecessors have been executed

= Complete step:
= > p nodes are ready

executed

" runanyp

- . . s Iy spcl.inf.ethz.ch
ETHzurich -i- ¥ 52 : /&&J 9 @spcl_eth

Systems @ ETH s

Greedy Scheduler

: Do as much as possiblein
every step executed
: A node is ready if all
predecessors have been executed
= Complete step:
= >pnodes are ready ready

" runanyp

= |ncomplete step:
= < p nodes ready

/
" run all \

o . A s B spcl.inf.ethz.ch
ETHzurich -i- Y 572 : /&&J 9 @spcl_eth

Systems @ ETH s

Greedy Scheduler

Maintain thread pool of live threads, each is ready or not
= Initial: Root thread in thread pool, all processors idle
= At the beginning of each step each processor is idle or has athread T to work on

= Ifidle
= Get ready thread from pool

= |fhasthread T

= Case 0: T has another instruction to execute
execute it

= Case 1: thread T spawns thread S
return T to pool, continue with S

» Case 2: T stalls
return T to pool, then idle

= Case 3: T dies
if parent of T has no living children, continue with the parent, otherwise idle

- . e N spcl.inf.ethz.ch
ETHzurich -i- : ' /\df?,&) 9 @spcl_eth

Systems @ ETH s

Work Stealing Scheduler

= Each processor maintains a “ready deque:” deque of threads ready for execution; bottom is
manipulated as a stack

Vv
A\

threads can be removed

ready deques

\%

threads can be added
or removed
(stack discipline) thread being executed

. . o r(E spcl.inf.ethz.ch
ETH:zurich] -i- <)~ "y @spcl_eth

ystems @ ETH e

Work Stealing Scheduler

16

ETHzurich -i-

ystems @ ETH e

Work Stealing Scheduler

17

. . o r(E spcl.inf.ethz.ch
ETH:zurich] -i- <)~ "y @spcl_eth

ystems @ ETH e

Work Stealing Scheduler

18

. . o r(E spcl.inf.ethz.ch
ETH:zurich] -i- <)~ "y @spcl_eth

ystems @ ETH e

Work Stealing Scheduler

19

- . , A) spcl.inf.ethz.ch
ETHziirich -i' - I 7N g @spol en

ystems @ ETH e

Work Stealing Scheduler

O O O O
e

= When a processor runs out of work;, it steals a task from the top of a random victim’s deque.

. . o r(E spcl.inf.ethz.ch
ETH:zurich] -i- <)~ "y @spcl_eth

ystems @ ETH e

Work Stealing Scheduler

21

. . o r(E spcl.inf.ethz.ch
ETH:zurich] -i- <)~ "y @spcl_eth

ystems @ ETH e

Work Stealing Scheduler

22

o . A s B spcl.inf.ethz.ch
ETHzurich -i- Y 572 : /&&J 9 @spcl_eth

Systems @ ETH s

Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack
= Initial: Root thread in deque of a random processor
= Deque not empty:
* Processor takes thread T from bottom and starts working
» T spawns S: Put T on stack, continue with S
» T stalls: Take next thread from stack
» T dies: Take next thread from stack
= |f T enables a stalled thread S, S is put on the stack of T's processor
= Deque empty:
» Steal thread from the top of a random (uniformly) processor’s deque

e e T f_ : g 3] - spclinf.ethz.ch
ETHzurich -E. P /@2 9 @spcl_eth

Systems @ ETH s

Parallel Depth First Scheduler

= Based on the following insight:

» Important (sequential) programs have already been highly tuned to get a good cache performance on a
single score

= Small working set
» Good spatial and temporal reuse
= Whl Why the speedup is not that different? d the ready-to-execute task that the sequential

pro Low miss/instruction ratio =>
High Operational Intensity

2 2 0.2 30 ® 15
5 | Moo S 77| mpo 5 | Moo S | mmpor
£ |Cws 3 [[ws - 3 [
215 B 0.15 @
£ 20 L=
g S 3 :
g 10 8 0.1 g 15 =
= E_ = E_
3 - 210 %05
E 5 ¢ 0.05 g 2
o 5 L.
o E w E
o J 9 9 1] J Y 9 L
1 2 4 8 16 i 2 4 8 16 1 2 4 8 16 a2 1 2 4 8 18 a2
number of cores (default configurations) number of cores (default configurations) number of cores (default configurations) number of cores (default configurations)
(a) LU (b) LU (e) Mergesort (f) Mergesort

Liaskovitis, Vasileios, et al. "Parallel depth first vs. work stealing schedulers on CMP architectures." Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 2006.

e S~ i >) spcl.inf.ethz.ch
ETHzurich -i- Y 57 < /&&J 9 @spcl_eth

Systems @ ETH s

Introducing Cilk

= Cilk extends the C language with just a handful of keywords
= cilk: identifies a cilk procedure

= spawn: spawns a new task cilk int fib (int n) {
= sync: synchronization point ;{se(n?Z) return (n);
= |t provides performance guarantees based int x,y;

on performance abstractions. x = spawn fib(n-1);

= Cilkis processor-oblivious. y = spawn fib(n-2);
sync;
= Cilk developed at MIT return (x+y);

= Cilk++ developed at Cilk Arts

= Cilk Plus based on Cilk and Cilk++
= Maintained by Intel

http://supertech.csail.mit.edu/cilk/lecture-1.ppt

- . e N spcl.inf.ethz.ch
ETHzurich -i- : ' /\df?,&) 9 @spcl_eth

Systems @ ETH s

Cilk Example: fib(4)

cilk int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1) ;
y = spawn fib(n-2);
sync;
return (x+y);
}

} / What about pointers? A pointer to stack space can be passech

. | from parent to child, but not from child to parent.
Assume for sim A B C D E

Views of stack
http://supertech.csail.mit.edu/cilk/lecture-1.ppt K

Work: T, =17

- . . s Iy spcl.inf.ethz.ch
ETHzurich -i- ¥ 52 : /&&J 9 @spcl_eth

Systems @ ETH s

Cilk Example: Vector Addition

void vadd (real *A, real *B, int n) {
int i; for (i=0; i<n; i++) A[i]+=B[i]:;
}

How to parallelize?

void vadd (real *A, real *B, int n) {
if (n<=BASE) {

int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {

vadd (A, B, n/2);

vadd (A+n/2. B+n/2. n-n/2):

http://supertech.csail.mit.edu/cilk/lecture-1.ppt

- . . s Iy spcl.inf.ethz.ch
ETHzurich -i- ¥ 52 : /&&J 9 @spcl_eth

Systems @ ETH zunin oz —

Cilk Example: Vector Addition

void vadd (real *A, real *B, int n) {
int i; for (i=0; i<n; i++) A[i]+=B[i]:;
}

How to parallelize?

cilk void vadd (real *A, real *B, int n) {
if (n<=BASE) {
int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {
spawn vadd (A, B, n/2;
spawn vadd (A+n/2. R+n/2. n-n/2:
} sync;

}

http://supertech.csail.mit.edu/cilk/lecture-1.ppt

e S~ i >) spcl.inf.ethz.ch
ETHzurich -i- Y 57 < /&&J 9 @spcl_eth

Systems @ ETH s

Cilk Plus: Scalability Estimation

= Cilkview reads from metadata embedded by the Cilk Plus compiler to perform its
calculations.

= Cilkview generates rough (but repeatable) performance measures by counting instructions
rather than reading from a clock.

= Despite the coarseness of measurements, Cilkview accurately estimates scalability.

http://www.ckluk.org/ck/talks/cilkplus-tutorial-ppopp11.pdf

- . , A spcl.inf.ethz.ch
ETHziirich -i' ~ "V No g @spcl_eth

Systems @ ETH s

Cilk Plus: Scalability Estimation

£ CilkView =13

gsort

30 +

20 +

Speedup

15 +

10 +
5 4
0 + t t ——+ Tt +
0 5 10 15 20 25 30
Cores
}K Measured Speedup —f&— Lower Performance Bound
—¥— Upper Performance Bound —— Application Parallelism = 21.31
|desl Speadup

http://www.ckluk.org/ck/talks/cilkplus-tutorial-ppopp11.pdf

e . spcl.inf.ethz.ch
ETHzurich -i- A@ﬁ: 9 @spcl_eth

Systems @ ETH e

Cilk Plus: Race Detection

test()

cilk_spawn race();
cilk_spawn racel();

[salvodg@einstein bin]$

[salvodg@einstein bin]$

[salvodg@einstein binl$./cilkscreen ../examples/simple-race/simple-race
Cilkscreen Race Detector Vv2.0.0, Build 4421

Race condition on location 0x603a90
::__cilk_spawn_1::operator()+0x67)

write access at 0x400e97: (/home/salvodg/cilktools-1inux-004421/examples/simple-race/simple-race.cpp:34, test()
write access at 0x400f27: (/home/salvodg/cilktools-1inux-004421/examples/simple-race/simple-race.cpp:39, test()::_cilk_spawn_2::
called by 0x400cdb: (/home/salvodg/cilktools-1inux-004421/examples/simple-race/simple-race.cpp:45, test+0xab)
g called by 0x400cOa: (/home/salvodg/cilktools-Tinux-004421/examples/simple-race/simple-race.cpp:50, main+0x2a)
one: x =1
1 error found by Cilkscreen
[salvodg@einstein binl$

operator()+0x67)

