ey

. . o T e e ‘. . S aR - spcl.inf.ethz.ch
ETH:zirich s B S W @spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Performance L AR
Recitation session IR I

o a8 e
. 'nu.,‘" NN
§ R o
" : N
‘ .

e S~ i >) spcl.inf.ethz.ch
ETHzurich -i- Y 57 < /&&J 9 @spcl_eth

Systems @ ETH s

Administrativia

= Reminder: Project presentations next Monday
= 10min each
» Presentations order as teams are displayed on the web-page
= Send me an e-mail by Sunday if you have particular time constraints (already got some)
» Send slides at digirols@inf.ethz.ch by Sunday 11/6 11:59pm
» Rough guidelines:
Present your plan
Related work
Preliminary results (milestones)

= Main goal: gather feedbacks (so present some details)
= |deally one presenter (make sure to rotate for other presentations!)

mailto:salvatore.di.girolamo@inf.ethz.ch

ETHzurich -E-

spcl.inf.ethz.ch

Systems @ ETH s

Amdahl’s Law

3y @spcl_eth

Time of sequential program with f as the fraction not affected 1000

by the parallelization:
T, =fTi+(1-T

Time of parallel program:

(1-)T

Serial Speedup 672
fraction

¥* 0.1%
*+ 1%

7 10% ——— 100

30% —

<~ 50%

Tp = T, +
p=fTh p

awi|

Speedup

T 1
T,1> S1;f+
5 +f

= [T,

Serial work I
Parallelizable work I III

10

3
- g

T T T T | | I 1
16 32 64 128 256 512 1024 2048

Number of workers

-
N
=N
o 4

IA

| =

spcl.inf.ethz.ch

3y @spcl_eth

ETHzurich -i-

Systems @ ETH s

Amdahl’s Law

1000

=

Time of sequenty

by the paralleli It’s like to see the glass as half empty but...

It could be even worse!

. - 100
Time of parall ol FrT |
70 P -] //
” /
50
Sp it / == Amdahl's Law
" Reality 10
. 30 /
Serial work //—,,
20 \
. 3
Parallelizable work
10 // ——< 2
0 v ooy " v '
= 0 50 100 150 200 250 T 1
3 > 1024 2048

Possible factors: load balancing, communication costs, 1/0, scheduling

Number of processors

I

=7

- . , A) spcl.inf.ethz.ch
ETHziirich -i' - (Y Y Nx g @spol eth

Systems @ ETH s

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with f as the fraction not affected by the parallelization on P-processors machine:

Tl — 0(T1 + (1 _a)PTl

Time of parallel program: Pt pos o

4 P=8
TP — aTl + (1 _ a)Tl Serial work
Parallelizable work
Speedup: _
T
Sp=—<a+P(l—a)
Tp

aun |

Note: no parallel overheads are taken into account here!

- . . s Iy spcl.inf.ethz.ch
ETHzurich -i- ¥ 52 : /&&J 9 @spcl_eth

Systems @ ETH s
g .

= Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

= Efficiency
= Gives idea on the “utilization” degree of the computing resources

= Strong Scaling
* Problem size stays fixed as the number of processing elements are increased

= Weak Scaling
» Problem size increases as the number of processing elements are increased

- . , iy spcl.inf.ethz.ch
ETHziirich -i‘ - - Y Ao o @spel_eth

Systems @ ETH s

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel
Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there
are no additional overheads, what is the parallel speedup?

Amdahl’s law assumes that a program consists of a serial part and a parallelizable part. The fraction of the program
which is serial can be denoted as B — so the parallel fraction becomes 1 — B. If there is no additional overhead
due to parallelization, the speedup can therefore be expressed as

1

2= B+ 1(1-B)

For the given value of B = 0.01 we get S(61) = 38.125.

- . e N spcl.inf.ethz.ch
ETHzurich -i- : ' /@J 9 @spcl_eth
Systems @ ETH s

oz —

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that
add overhead depending on the number of cores involved. There are two broadcast implementations
available. One adds a parallel overhead of 0.0001n, the other one 0.0005 logn. For which number of cores
do you get the highest speedup for both implementations?

1
~0.001 + 20.999 + 0.0001n

1
~0.001 + 20.999 + 0.0005l0g(n)

S1(n)

SQ (n)

We can get the maximum of these terms if we minimize the term in denominator.

d | i
—0.001 + —0.999 4+ 0.0001n = 0 < 0.0001 — Lt =0 n=~100
dn n n2
d 1 0.005n0.999
£ 0.001 + =0.999 + 0.0005l0g(n) = 0 > ——2 P27 _ (5 5 = 1998
dn n n2

o . A s B spcl.inf.ethz.ch
ETHzurich -i- Y 572 : /&&J 9 @spcl_eth

Systems @ ETH s

PRAM: Parallel Random Access Machine

= P processes with shared memory

= |gnores communications and synchronization

= |nstruction are composed by 3 phases: Shared Memory
» Load data from shared memory (if needed)
» Perform computation (if any)
» Store data in shared memory (if needed)
= Any process can read/write to any memory cell P, P, P, T Pp

= How conflicts are handled?

. . g = : g %) » spcl.inf.ethz.ch
ETHzurich -E- P /@2 9 @spcl_eth

Systems @ ETH s

PRAM: Conflicting Accesses

= EREW: Exclusive Read / Exclusive Write
= No two processes are allowed to read or write to the same memory cell simultaneously

= CREW: Concurrent Read / Exclusive Write
» Simultaneous reads are allowed; only one process can write

= CRCW: Concurrent Read / Concurrent Write
» Simultaneous reads and write to the same memory cell are allowed
» Priority CRCW: processors assigned fixed distinct priorities, highest priority wins
= Arbitrary CRCW: one randomly chosen write wins

= Common CRCW: all processors are allowed to complete write if and only if all the values to be written are
equal

Weak Strong
EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

http://homes.cs.washington.edu/~arvind/cs424/notes/|2-6.pdf

ETHzurich -E-

ystems @ ETH zu.

PRAM: Reduction

Reduce p values on the p-processor EREW PRAM in O(logp) time
The algorithm uses exclusive reads and writes
It’s the basis of other EREW algorithms

spcl.inf.ethz.ch

9 @spcl_eth

- . , iy spcl.inf.ethz.ch
ETHzurich -E- : ' /\df?:i) 9 @spcl_eth

Systems @ ETH zunin oz —

PRAM: First 1

= Computing a position of the first one in the sequence of 0’s and 1’s in a constant time.

T N I

(2 parallel steps and n? processors) l l

for each 1< i<j < n do 1in parallel
if C[i] =1 and C[j]=1 then C[j]:=0

for each 1< 1 < n do in parallel - 1 - 0 -

if C[i] =1 then FIRST-ONE-POSITION:=1

/

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

. . o r(E spcl.inf.ethz.ch
ETHziirich -i' Y Y Nx g @spel_eth

PRAM: First 1 — Reducing Number of Processors

0000 1 00000 1 000

Algorithm B: it reports if there is any one in the table.

There—-is-one:=0
for each 1< 1 < n do 1n 4
if C[i] =1 then The

How many processors we need? 1

(Wm?=n !

Merge A and B What's the complexity?
1. Partition table C into se 3 parallel steps — 0(1) m
2. Ineach segment apply !

3. Find position of the first one in these sequence by cejtejced(e)(elle)(e)(s](e] (&)
applying algorithm A

4. Apply algorithm A to this single segment and compute
the final value

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt 13

- . , oS spcl.inf.ethz.ch
ETHzurich -E- ' /@J 9 @spcl_eth

Systems @ ETH s

PRAM: Odd-Even Merge Sort

= (QOdd-Even Merge

Merge(x_1, ..., x_n, y_1 ... y_n)

Merge(x_1, x_3, x_ b, y_2, y_4, y_6 ...) toget a_1l ... a_n 0(]ogn) with n processors
Merge(x_2, x_ 4, x 6, y_1, y_3, y.6 ...) to get b_1 ... b_n

for i=1 to n do z_2i-1=min(a_i, b_1i)

z 21 =max(a_i, b_1i)

= (Odd-Even Merge Sort

Sort(x_1, ... x_n,)
0 (log? n) with n processors
Merge(Sort(x_1, ... x_n/2), Sort(x_n/2, ... x_n))

http://people.cs.pitt.edu/~kirk/cs1510/notes/parallelnotes. pdf

- . , iy spcl.inf.ethz.ch
ETHzurich -E- : ' /\df?:i) 9 @spcl_eth

Systems @ ETH zunin oz —

Exercise 3

We can find the minimum from an unordered collection of n natural numbers by performing a reduction
along a binary tree: In each round, each processor compares two elements, and the smaller element gets
to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

The dependency graph of this computation is a tree with log2(n) levels. Therefore the longest path, which is equal
to the depth/span has length loga(n). The tree contains 2n — 1 nodes, which is equal to the work.

- . , A) spcl.inf.ethz.ch
ETHziirich -i' - Y Ao o @spel_eth

Systems @ ETH s

Exercise 4

Develop an Algorithm which can find the minimum in an unordered collection of n natural numbers in 0(1)
time on a CRCW-PRAM machine.

Assume the inmput list is stored in the array input. We use n? processors, labelled p(i, j) with 0 < p,j < n. Each
processor p(i,j) performs the comparison inputli] j input[j]. If the result is false then i can not be the smallest
element, and tmpli] is set to false (all elements of tmp are initially set to true). Then n processors check the
different values of tmp — only one element tmp|[x] will be true, that means input|x] is the smallest element.

. o = : g 3) - spcl.inf.ethz.ch
ETHzurich -i- o o s Z@I 9 @spcl_eth

Systems @ ETH s

Public Lecture: Scientific Performance Engineering in HPC

Invitation to a lecture by Prof. Dr. Torsten Hoefler (Scalable Parallel Computing Lab at ETH Zurich)

Date: Tuesday, November 8, 2016
Time: 17:15
Location: HG F 5, ETH Zurich

Abstract:

We advocate the usage of mathematical models and abstractions in practical high-performance computing. For this, we show a series of
examples and use-cases where the abstractions introduced by performance models can lead to clearer pictures of the core problems and
often provide non-obvious insights. We start with models of parallel algorithms leading to close-to-optimal practical implementations. We
continue our tour with distributed-memory programming models that provide various abstractions to application developers. A short
digression on how to measure parallel systems shows common pitfalls of practical performance modeling. Application performance models
based on such accurate measurements support insight into the resource consumption and scalability of parallel programs on particular
architectures. We close with a demonstration of how mathematical models can be used to derive practical network topologies and routing
algorithms. In each of these areas, we demonstrate newest developments but also point to open problems. All these examples testify to
the value of modeling in practical high-performance computing. We assume that a broader use of these techniques and the development
of a solid theory for parallel performance will lead to deep insights at many fronts.

http://htor.inf.ethz.ch/

