
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Languages and Locks

Instructor: Torsten Hoefler & Markus Püschel

TAs: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=1o4YViBAGU0

https://www.youtube.com/watch?v=1o4YViBAGU0


Administrivia

 You should have a project partner by now

 And a topic!

 Progress presentations: Monday 11/7 (two weeks from today!)

 Send slides (ppt or pdf) by Sunday 11/6 11:59pm to Salvatore!

 10 minutes per team (hard limit)

 Prepare! This is your first impression, gather feedback from us!

 Rough guidelines:

Present your plan

Related work (what exists, careful literature review!)

Preliminary results (what are your detailed plans, milestones)

Main goal is to gather feedback, so present some details

Ideally one presenter (make sure to switch for other presentations!)

 Final project presentation: Monday 12/19 during last lecture

2



Review of last lecture

 Locked Queue

 Correctness

 Lock-free two-thread queue

 Linearizability

 Combine object pre- and postconditions with serializability

 Additional (semantic) constraints!

 Histories

 Analyze given histories

Projections, Sequential/Concurrent, Completeness, Equivalence, Well 
formed, Linearizability (formal)

3



Peer Quiz

 Instructions: 

 Pick some partners (locally) and discuss each question for 2 minutes

 We then select a random student (team) to answer the question

 How can histories be used to proof a parallel code correct?

 How do histories relate to the source code?

 Can proofing be automated?

 What are the practical limits of linearizability?

 Can it always be applied?

 Is there a performance tradeoff? Always? Sometimes? Never?

4



DPHPC Overview

5



Goals of this lecture

 Languages and Memory Models

 Java/C++ definition

 Recap serial consistency

 Races (now in practice)

 Mutual exclusion

 Locks

 Two-thread

 Peterson

 N-thread

 Many different locks, strengths and weaknesses

 Lock options and parameters

 Problems and outline to next class

6



Everybody wants to optimize

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

7



Recap: Java and C++ High-level overview

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

8



Case Study: Locks - Lecture Goals

 Among the simplest concurrency constructs

 Yet, complex enough to illustrate many optimization principles

 Goal 1: You understand locks in detail

 Requirements / guarantees

 Correctness / validation

 Performance / scalability

 Goal 2: Acquire the ability to design your own locks

 Understand techniques and weaknesses/traps

 Extend to other concurrent algorithms

Issues are very much the same 

 Goal 3: Feel the complexity of shared memory!

9



Preliminary Comments

 All code examples are in C/C++ style

 Neither C nor C++ <11 have a clear memory model

 C++ is one of the languages of choice in HPC

 Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most of the examples are incorrect in anything but 
sequential consistency!

In fact, you’ll most likely not need those algorithms, but the principles 
will be useful!

 x86 is really only used because it’s common

 This does not mean that we consider the ISA or memory model elegant!

 We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

 Number of threads/processes is p, tid is the thread id

10



Recap Concurrent Updates

 Multi-threaded execution!

 Value of a for p=1?

 Value of a for p>1?

Why? Isn’t it a single instruction?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;
gcc -O3

movl $1000, %eax // i=n=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  

11

movl $1000, %eax // i=n=1000
movl $0, -24(%rsp)  // a = 0
mfence // a is visible!

.L2:
lock addl $1 , -24(%rsp)  // (*a)++
subl $1, %eax // i—
jne .L2                     // loop if i>0  

const int n=1000;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 

a++;

g++ -O3



One instruction less! Performance!?

 run with larger n (108)

 Compiler: gcc version 4.9.2 (enabled experimental c++11 support, -O3)

 Single-threaded execution only!

12

const int n= 108;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;

const int n= 108;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 

a++;

0.23s

Guess! 0.78s

Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, PACT’15



Some Statistics

 Nondeterministic execution

 Result depends on timing  (probably not desired)

 What do you think are the most significant results? 

 Running two threads on Core i5 dual core

 a=1000? 2000? 1500? 1223? 1999?

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 

a++;

13



Some Statistics

14



Conflicting Accesses

 (recap) two memory accesses conflict if they can happen at the same time 
(in happens-before) and one of them is a write (store)

 Such a code is said to have a “race condition”

 Also data-race

 Trivia around races:

The Therac-25 killed three people 
due to a race

A data-race lead to a large blackout 
in 2003, leaving 55 million people 
without power causing $1bn damage

 Can be avoided by critical regions

 Mutually exclusive access to a set of operations

15



Mutual Exclusion

 Control access to a critical region

 Memory accesses of all processes happen in program order (a partial 
order, many interleavings)

An execution history defines a total order of memory accesses

 Some subsets of memory accesses (issued by the same process) need to 
happen atomically (thread a’s memory accesses may not be interleaved
with other thread’s accesses)

To achieve linearizability!

We need to restrict the valid executions

  Requires synchronization of some sort

 Many possible techniques (e.g., TM, CAS, T&S, …)

 We first discuss locks which have wait semantics

movl $1000, %eax // i=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  

16



Fixing it with locks

 What must the functions lock and unlock guarantee?

 #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

 #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

 Any performance guesses (remember, 0.23s  0.78s for atomics)

 2.26s

const int n=1000;
volatile int a=0;
omp_lock_t lck; 
for (int i=0; i<n; ++i) {

omp_set_lock(&lck); 
a++;
omp_unset_lock(&lck);

}

gcc -O3

movl $1000, %ebx // i=1000
.L2:

movq 0(%rbp), %rdi // (SystemV CC)
call omp_set_lock // get lock
movq 0(%rbp), %rdi // (SystemV CC)
movl (%rax), %edx // edx = *a
addl $1, %edx // edx++
movl %edx, (%rax)   // *a = edx
call omp_unset_lock // release lock
subl $1, %ebx // i—
jne .L2                   // repeat if i>0

17



Lock Overview

 Lock/unlock or acquire/release

 Lock/acquire: before entering CR

 Unlock/release: after leaving CR

 Semantics:

 Lock/unlock pairs have to match

 Between lock/unlock, a thread holds the lock

18



?

Desired Lock Properties

 Mutual exclusion 
 Only one thread is on the critical region 

 Consistency
 Memory operations are visible when critical region is left

 Progress
 If any thread a is not in the critical region, it cannot prevent another thread b from 

entering

 Starvation-freedom (implies deadlock-freedom)
 If a thread is requesting access to a critical region, then it will eventually be 

granted access

 Fairness
 A thread a requested access to a critical region before thread b. Did is also granted 

access to this region before b?

 Performance
 Scaling to large numbers of contending threads

19



Simplified Notation (cf. Histories)

 Time defined by precedence (a total order on events)

 Events are instantaneous (linearizable)

 Threads produce sequences of events a0,a1,a2,…

 Program statements may be repeated, denote i-th instance of a as ai

 Event a occurs before event b: a → b

 An interval (a,b) is the duration between events a → b

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

 Critical regions

 A critical region CR is an interval (a,b), where a is the first operation in the 
CR and b the last

 Mutual exclusion

 Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA  for all valid executions!

 Assume atomic registers (for now)

20



Simple Two-Thread Locks

 A first simple spinlock

Why does this not guarantee
mutual exclusion?

volatile int flag=0;

void lock() {
while(flag);
flag = 1;

}

void unlock() {
flag = 0;

}

Busy-wait to acquire lock 
(spinning)

Is this lock correct?

21



Proof Intuition

 Construct a sequentially consistent history that permits both 
processes to enter the CR 

22



Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this 
guarantee mutual exclusion?

23



Correctness Proof

 In sequential consistency!

 Intuitions:

 Situation: both threads are ready to enter

 Show that situation that allows both to enter leads to a schedule violating 
sequential consistency

Using transitivity of program and synchronization orders

24



Simple Two-Thread Locks

 Another two-thread spin-lock: LockOne

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this 
guarantee mutual exclusion?

Does it work in practice?

25



Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee 
mutual exclusion?

26



Correctness Proof

 Intuition:

 Victim is only written once per lock()

 A can only enter after B wrote

 B cannot enter in any sequentially consistent schedule

27



Simple Two-Thread Locks

 A third attempt at two-thread locking: LockTwo

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee 
mutual exclusion?

Does it work in practice?

28



Simple Two-Thread Locks

 The last two locks provide mutual exclusion

 LockOne succeeds iff lock attempts do not overlap

 LockTwo succeeds iff lock attempts do overlap

 Combine both into one locking strategy!

 Peterson’s lock (1981)

29



Peterson’s Two-Thread Lock (1981)

 Combines the first lock (request access) with the second lock (grant 
access) 

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}

30



Proof Correctness

 Intuition:

 Victim is written once

 Pick thread that wrote victim last

 Show thread must have read flag==0

 Show that no sequentially consistent schedule permits that

31



Starvation Freedom

 (recap) definition: Every thread that calls lock() eventually 
gets the lock.

 Implies deadlock-freedom!

 Is Peterson’s lock 
starvation-free?

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}

32



Proof Starvation Freedom

 Intuition:

 Threads can only wait/starve in while()

Until flag==0 or victim==other

 Other thread enters lock()  sets victim to other

Will definitely “unstuck” first thread

 So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads  one 
must leave!

33



Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

34

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}



Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

35

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}



Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

36

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0;  // I’m not interested

}



Peterson in Practice … on x86

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

37

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm (“mfence”);
flag[tid] = 0;  // I’m not interested

}



Correct Peterson Lock on x86

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1;      // I’m interested
victim = tid;      // other goes first
asm (“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm (“mfence”);
flag[tid] = 0;  // I’m not interested

}
38



Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it correct?

39

volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { //attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}



Filter Lock - Correctness

 Lemma: For 0<j<n-1, there are at most n-j threads at level j!

 Intuition:

 Recursive proof (induction on j)

 By contradiction, assume n-j+1 threads at level j-1 and j

 Assume last thread to write victim

 Any other thread writes level before victim

 Last thread will stop at spin due to other thread’s write

 j=n-1 is critical region

40



Locking for N threads

 Simple generalization of Peterson’s lock, assume n levels l = 0…n-1

 Is it starvation-free?

41

volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { //attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}



Filter Lock Starvation Freedom

 Intuition:

 Inductive argument over j (levels)

 Base-case: level n-1 has one thread (not stuck)

 Level j: assume thread is stuck

Eventually, higher levels will drain (induction)

Last entering thread is victim, it will wait

Thus, only one thread can be stuck at each level

Victim can only have one value  older threads will advance!

42



Filter Lock

 What are the disadvantages of this lock?

43

volatile int level[n] = {0,0,…,0}; // indicates highest level a thread tries to enter
volatile int victim[n]; // the victim thread, excluded from next level
void lock() {

for (int i = 1; i < n; i++) { // attempt level i
level[tid] = i;
victim[i] = tid;
// spin while conflicts exist
while ((∃k != tid) (level[k] >= i && victim[i] == tid )) {};

}
}

void unlock() {
level[tid] = 0;

}



 Starvation freedom provides no guarantee on how long a thread 
waits or if it is “passed”!

 To reason about fairness, we define two sections of each lock 
algorithm:

 Doorway D (bounded # of steps)

 Waiting W (unbounded # of steps)

 FIFO locks:

 If TA finishes its doorway before TB the CRA  CRB

 Implies fairness

void lock() {
int j = 1 - tid;
flag[tid] = true; // I’m interested
victim = tid;      // other goes first
while (flag[j] && victim == tid) {}; 

}

Lock Fairness

44



Lamport’s Bakery Algorithm (1974)

 Is a FIFO lock (and thus fair)

 Each thread takes a number in the doorway and threads enter in the 
order of their number!

volatile int flag[n] = {0,0,…,0};
volatile int label[n] = {0,0,….,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {

flag[tid] = 0;
}

45



Lamport’s Bakery Algorithm (1974)

 Advantages:

 Elegant and correct solution

 Starvation free, even FIFO fairness

 Not used in practice!

 Why? 

 Needs to read/write N memory locations for synchronizing N threads

 Can we do better?

Using only atomic registers/memory

46



A Lower Bound to Memory Complexity

 Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least 
two processes and S solves mutual exclusion with global progress 
[deadlock-freedom], then S must have at least as many variables as 
processes”

 So we’re doomed! Optimal locks are available and they’re 
fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual 
exclusion. Information and Computation, 107(2):171–184, December 
1993

47



Hardware Support?

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates 
committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

48



Relative Power of Synchronization

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Concept of “consensus number” C if a primitive can be used to solve the 
“consensus problem” in a finite number of steps (even if threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞

49



Test-and-Set Locks

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

50



Test-and-Set Locks

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval

 When will the lock be 
granted?

 Does this work well in 
practice?

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

51



Contention

 On x86, the XCHG instruction is used to implement TAS

 For experts: x86 LOCK is superfluous!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 bus lock is essentially a full memory barrier 

movl $1, %eax
xchg %eax, (%ebx)

52



Test-and-Test-and-Set (TATAS) Locks

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time,  no cache coherency/memory traffic

 Danger!

 Efficient but use with great 
care!

 Generalizations are 
dangerous

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}
53



Warning: Even Experts get it wrong!

 Example: Double-Checked Locking

Problem: Memory ordering leads to race-conditions!

1997

54



Contention?

 Do TATAS locks still have contention?

 When lock is released, k threads fight for 
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good 
solution? (think “collision
avoidance”)

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

55



TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1) {

wait(time);
time *= 2; // double waiting time 

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

56



TAS Lock with Exponential Backoff

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

volatile int lck = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lck) == 1) {

wait(time);
time = min(time * 2, maxtime); 

}
}

void unlock() {
lck = 0;

}

57
Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory 
multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990



Comparison of TAS Locks

58



Improvements?

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive 
atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry 
to CR)

 What would be a fix for that? 

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness

59



Array Queue Lock

 Array to implement 
queue

 Tail-pointer shows next free 
queue position

 Each thread spins on own 
location

CL padding!

 index[] array can be put in TLS

 So are we done  now?

 What’s wrong?

 Synchronizing M objects 
requires Θ(NM) storage

 What do we do now?

60

volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one

}



CLH Lock (1993)

 List-based (same queue 
principle)

 Discovered twice by Craig, 
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!

61

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}



CLH Lock (1993)

 Qnode objects represent 
thread state!

 succ_blocked == 1 if waiting 
or acquired lock

 succ_blocked == 0 if released 
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?

62

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}



MCS Lock (1991)

 Make queue explicit

 Acquire lock by 
appending to queue

 Spin on own node 
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

63

typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL; 

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}



Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!

64



Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

65


