
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Cache Coherence & Memory Models

Instructor: Torsten Hoefler & Markus Püschel
(Today: Sabela Ramos)
TAs: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=zJybFF6PqEQ

https://www.youtube.com/watch?v=zJybFF6PqEQ

Peer Quiz – Critical Thinking
 Instructions:

 Pick some partners (locally) and discuss each question for 1 minute
 We then select a random student (team) to answer the question

 What is the top500 list? Discuss its usefulness (pro/con)!
 What should we change?

 What is the main limitation in single-core scaling today?
 i.e., why do cores not become much faster?

 What is the difference between UMA and NUMA architectures?
 Discuss which architecture is more scalable!

 Describe the difference between shared memory, partitioned global
address space, and distributed memory programming
 Name at least one practical example programming system for each
 Why do all of these models co-exist?

2

DPHPC Overview

3

Goals of this lecture

 Memory Trends

 Cache Coherence

 Memory Consistency

4

Memory – CPU gap widens

 Measure processor speed as “throughput”
 FLOPS/s, IOPS/s, …
 Moore’s law - ~60% growth per year

 Today’s architectures
 POWER8: 338 dp GFLOP/s – 230 GB/s memory bw
 BW i7-5775C: 883 GFLOPS/s ~50 GB/s memory bw
 Trend: memory performance grows 10% per year

5

Source: Jack Dongarra

Source: John Mc.Calpin

Issues (AMD Interlagos as Example)
 How to measure bandwidth?

 Data sheet (often peak performance, may include overheads)
Frequency times bus width: 51 GiB/s

 Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?

 Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

 How to measure Latency?
 Data sheet (often optimistic, or not provided)

<100ns
 Random pointer chase

110 ns with one core, 258 ns with 32 cores!
6

Conjecture: Buffering is a must!

 Two most common examples:

 Write Buffers
 Delayed write back saves memory bandwidth
 Data is often overwritten or re-read

 Caching
 Directory of recently used locations
 Stored as blocks (cache lines)

7

Cache Coherence

 Different caches may have a copy of the same memory location!

 Cache coherence
 Manages existence of multiple copies

 Cache architectures
 Multi level caches
 Shared vs. private (partitioned)
 Inclusive vs. exclusive
 Write back vs. write through
 Victim cache to reduce conflict misses
 …

8

Exclusive Hierarchical Caches

9

Shared Hierarchical Caches

10

Shared Hierarchical Caches with MT

11

Caching Strategies (repeat)

 Remember:
 Write Back?
 Write Through?

 Cache coherence requirements
A memory system is coherent if it guarantees the following:
 Write propagation (updates are eventually visible to all readers)
 Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (later)

12

Write Through Cache

13

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

Write Back Cache

14

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later store X=2 from CPU1 lost

Requires write serialization!

A simple (?) example

 Assume C99:

 Two threads:
 Initially: a=b=0
 Thread 0: write 1 to a
 Thread 1: write 1 to b

 Assume non-coherent write back cache
 What may end up in main memory?

15

struct twoint {
int a;
int b;

}

Cache Coherence Protocol

 Programmer can hardly deal with unpredictable behavior!

 Cache controller maintains data integrity
 All writes to different locations are visible

 Snooping
 Shared bus or (broadcast) network

 Directory-based
 Record information necessary to maintain coherence:

E.g., owner and state of a line etc.

16

Fundamental Mechanisms

Fundamental CC mechanisms

 Snooping
 Shared bus or (broadcast) network
 Cache controller “snoops” all transactions
 Monitors and changes the state of the cache’s data
 Works at small scale, challenging at large-scale

E.g., Intel Broadwell

 Directory-based
 Record information necessary to maintain coherence

E.g., owner and state of a line etc.
 Central/Distributed directory for cache line ownership
 Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC

17

Source: Intel

Cache Coherence Parameters

 Concerns/Goals
 Performance
 Implementation cost (chip space, more important: dynamic energy)
 Correctness
 (Memory model side effects)

 Issues
 Detection (when does a controller need to act)
 Enforcement (how does a controller guarantee coherence)
 Precision of block sharing (per block, per sub-block?)
 Block size (cache line size?)

18

An Engineering Approach: Empirical start

 Problem 1: stale reads
 Cache 1 holds value that was already modified in cache 2
 Solution:

Disallow this state
Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update
 Incorrect write back of modified line writes main memory in different

order from the order of the write operations or overwrites neighboring
data

 Solution:
Disallow more than one modified copy

19

Invalidation vs. update (I)

 Invalidation-based:
 On each write of a shared line, it has to invalidate copies in remote caches
 Simple implementation for bus-based systems:

Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches

 Update-based:
 Local write updates copies in remote caches

Can update all CPUs at once
Multiple writes cause multiple updates (more traffic)

20

Invalidation vs. update (II)

 Invalidation-based:
 Only write misses hit the bus (works with write-back caches)
 Subsequent writes to the same cache line are local
  Good for multiple writes to the same line (in the same cache)

 Update-based:
 All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often
 Supports producer-consumer pattern well
 Many (local) writes may waste bandwidth!

 Hybrid forms are possible!

21

 Most common hardware implementation of discussed requirements
aka. “Illinois protocol”

Each line has one of the following states (in a cache):

 Modified (M)
 Local copy has been modified, no copies in other caches
 Memory is stale

 Exclusive (E)
 No copies in other caches
 Memory is up to date

 Shared (S)
 Unmodified copies may exist in other caches
 Memory is up to date

 Invalid (I)
 Line is not in cache

MESI Cache Coherence

22

Terminology

 Clean line:
 Content of cache line and main memory is identical (also: memory is up to

date)
 Can be evicted without write-back

 Dirty line:
 Content of cache line and main memory differ (also: memory is stale)
 Needs to be written back eventually

Time depends on protocol details

 Bus transaction:
 A signal on the bus that can be observed by all caches
 Usually blocking

 Local read/write:
 A load/store operation originating at a core connected to the cache

23

Transitions in response to local reads

 State is M
 No bus transaction

 State is E
 No bus transaction

 State is S
 No bus transaction

 State is I
 Generate bus read request (BusRd)

May force other cache operations (see later)
 Other cache(s) signal “sharing” if they hold a copy
 If shared was signaled, go to state S
 Otherwise, go to state E

 After update: return read value

24

Transitions in response to local writes

 State is M
 No bus transaction

 State is E
 No bus transaction
 Go to state M

 State is S
 Line already local & clean
 There may be other copies
 Generate bus read request for upgrade to exclusive (BusRdX*)
 Go to state M

 State is I
 Generate bus read request for exclusive ownership (BusRdX)
 Go to state M

25

Transitions in response to snooped BusRd

 State is M
 Write cache line back to main memory
 Signal “shared”
 Go to state S (or E)

 State is E
 Signal “shared”
 Go to state S and signal “shared”

 State is S
 Signal “shared”

 State is I
 Ignore

26

Transitions in response to snooped BusRdX

 State is M
 Write cache line back to memory
 Discard line and go to I

 State is E
 Discard line and go to I

 State is S
 Discard line and go to I

 State is I
 Ignore

 BusRdX* is handled like BusRdX!

27

MESI State Diagram (FSM)

28Source: Wikipedia

Small Exercise

 Initially: all in I state

29

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

Small Exercise

 Initially: all in I state

30

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Cache

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory

Optimizations?

 Class question: what could be optimized in the MESI protocol to
make a system faster?

31

Related Protocols: MOESI (AMD)

 Extended MESI protocol

 Cache-to-cache transfer of modified cache lines
 Cache in M or O state always transfers cache line to requesting cache
 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line
 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

32

MOESI State Diagram

33Source: AMD64 Architecture Programmer’s Manual

Related Protocols: MOESI (AMD)

 Modified (M): Modified Exclusive
 No copies in other caches, local copy dirty
 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared
 Exclusive right to make changes
 Other S copies may exist (“dirty sharing”)
 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):
 Same as MESI (one local copy, up to date memory)

 Shared (S):
 Unmodified copy may exist in other caches
 Memory is up to date unless an O copy exists in another cache

 Invalid (I):
 Same as MESI

34

Related Protocols: MESIF (Intel)

 Modified (M): Modified Exclusive
 No copies in other caches, local copy dirty
 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):
 Same as MESI (one local copy, up to date memory)

 Shared (S):
 Unmodified copy may exist in other caches
 Memory is up to date

 Invalid (I):
 Same as MESI

 Forward (F):
 Special form of S state, other caches may have line in S
 Most recent requester of line is in F state
 Cache acts as responder for requests to this line

35

Multi-level caches

 Most systems have multi-level caches
 Problem: only “last level cache” is connected to bus or network
 Snoop requests are relevant for inner-levels of cache (L1)
 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications
 On BusRd check if line is in M state in L1

It may be in E or S in L2!
 On BusRdX(*) send invalidations to L1
 Everything else can be handled in L2

 If L1 is write through, L2 could “remember” state of L1 cache line
 May increase traffic though

36

Directory-based cache coherence

 Snooping does not scale
 Bus transactions must be globally visible
 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping
 Root becomes a bottleneck

 Directory-based schemes are more scalable
 Directory (entry for each CL) keeps track of all owning caches
 Point-to-point update to involved processors

No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI …

37

© Markus Püschel
Computer Science

Basic Scheme

 System with N processors Pi

 For each memory block (size: cache
line) maintain a directory entry
 N presence bits
 Set if block in cache of Pi

 1 dirty bit

 First proposed by Censier and
Feautrier (1978)

38

Directory-based CC: Read miss

 Pi intends to read, misses

 If dirty bit (in directory) is off
 Read from main memory
 Set presence[i]
 Supply data to reader

 If dirty bit is on
 Recall cache line from Pj (determine by presence[])
 Update memory
 Unset dirty bit, block shared
 Set presence[i]
 Supply data to reader

39

Directory-based CC: Write miss

 Pi intends to write, misses

 If dirty bit (in directory) is off
 Send invalidations to all processors Pj with presence[j] turned on
 Unset presence bit for all processors
 Set dirty bit
 Set presence[i], owner Pi

 If dirty bit is on
 Recall cache line from owner Pj

 Update memory
 Unset presence[j]
 Set presence[i], dirty bit remains set
 Supply data to writer

40

Discussion

 Scaling of memory bandwidth
 No centralized memory

 Directory-based approaches scale with restrictions
 Require presence bit for each cache
 Number of bits determined at design time
 Directory requires memory (size scales linearly)
 Shared vs. distributed directory

 Software-emulation
 Distributed shared memory (DSM)
 Emulate cache coherence in software (e.g., TreadMarks)
 Often on a per-page basis, utilizes memory virtualization and paging

42

Open Problems (for projects or theses)

 Tune algorithms to cache-coherence schemes
 What is the optimal parallel algorithm for a given scheme?
 Parameterize for an architecture

 Measure and classify hardware
 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER

Relaxed Memory Models” and have fun!
 RDMA consistency is barely understood!
 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?
 How to fix the problems with inconsistent values?
 Compiler support (issues with arrays)?

43

Case Study: Intel Xeon Phi

44

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
45

Local read: RL= 8.6 ns
Remote read RR = 235 ns

Invalid read RI=278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”
46

 Prediction for both in E state: 479 ns
 Measurement: 497 ns (O=18)

Single-Line Ping Pong

47

 More complex due to prefetch

Multi-Line Ping Pong

Asymptotic Fetch
Latency for each cache

line (optimal
prefetch!)

Number
of CLs

Startup
overhead

Amortization of
startup

48

 E state:
 o=76 ns
 q=1,521ns
 p=1,096ns

 I state:
 o=95ns
 q=2,750ns
 p=2,017ns

Multi-Line Ping Pong

49

 E state:
 a=0ns
 b=320ns
 c=56.2ns

DTD Contention 

50

	Design of Parallel and High-Performance�Computing�Fall 2016�Lecture: Cache Coherence & Memory Models
	Peer Quiz – Critical Thinking
	DPHPC Overview
	Goals of this lecture
	Memory – CPU gap widens
	Issues (AMD Interlagos as Example)
	Conjecture: Buffering is a must!
	Cache Coherence
	Exclusive Hierarchical Caches
	Shared Hierarchical Caches
	Shared Hierarchical Caches with MT
	Caching Strategies (repeat)
	Write Through Cache
	Write Back Cache
	A simple (?) example
	Cache Coherence Protocol
	Fundamental CC mechanisms
	Cache Coherence Parameters
	An Engineering Approach: Empirical start
	Invalidation vs. update (I)
	Invalidation vs. update (II)
	MESI Cache Coherence
	Terminology
	Transitions in response to local reads
	Transitions in response to local writes
	Transitions in response to snooped BusRd
	Transitions in response to snooped BusRdX
	MESI State Diagram (FSM)
	Small Exercise
	Small Exercise
	Optimizations?
	Related Protocols: MOESI (AMD)
	MOESI State Diagram
	Related Protocols: MOESI (AMD)
	Related Protocols: MESIF (Intel)
	Multi-level caches
	Directory-based cache coherence
	Basic Scheme
	Directory-based CC: Read miss
	Directory-based CC: Write miss
	Discussion
	Open Problems (for projects or theses)
	Case Study: Intel Xeon Phi
	Communication?
	Número de diapositiva 46
	Single-Line Ping Pong
	Multi-Line Ping Pong
	Multi-Line Ping Pong
	DTD Contention 

