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Peer Quiz – Critical Thinking
 Instructions: 

 Pick some partners (locally) and discuss each question for 1 minute
 We then select a random student (team) to answer the question

 What is the top500 list? Discuss its usefulness (pro/con)!
 What should we change?

 What is the main limitation in single-core scaling today?
 i.e., why do cores not become much faster?

 What is the difference between UMA and NUMA architectures?
 Discuss which architecture is more scalable!

 Describe the difference between shared memory, partitioned global 
address space, and distributed memory programming
 Name at least one practical example programming system for each
 Why do all of these models co-exist?
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DPHPC Overview
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Goals of this lecture

 Memory Trends

 Cache Coherence

 Memory Consistency
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Memory – CPU gap widens

 Measure processor speed as “throughput”
 FLOPS/s, IOPS/s, …
 Moore’s law - ~60% growth per year

 Today’s architectures
 POWER8: 338 dp GFLOP/s – 230 GB/s memory bw
 BW i7-5775C: 883 GFLOPS/s ~50 GB/s memory bw
 Trend: memory performance grows 10% per year
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Issues  (AMD Interlagos as Example)
 How to measure bandwidth?

 Data sheet (often peak performance, may include overheads)
Frequency times bus width: 51 GiB/s

 Microbenchmark performance
Stride 1 access (32 MiB): 32 GiB/s
Random access (8 B out of 32 MiB): 241 MiB/s
Why?

 Application performance 
As observed (performance counters)
Somewhere in between stride 1 and random access

 How to measure Latency?
 Data sheet (often optimistic, or not provided)

<100ns
 Random pointer chase

110 ns with one core, 258 ns with 32 cores!
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Conjecture: Buffering is a must!

 Two most common examples:

 Write Buffers
 Delayed write back saves memory bandwidth
 Data is often overwritten or re-read

 Caching
 Directory of recently used locations
 Stored as blocks (cache lines)
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Cache Coherence

 Different caches may have a copy of the same memory location!

 Cache coherence
 Manages existence of multiple copies

 Cache architectures
 Multi level caches
 Shared vs. private (partitioned)
 Inclusive vs. exclusive
 Write back vs. write through
 Victim cache to reduce conflict misses
 …
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Exclusive Hierarchical Caches
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Shared Hierarchical Caches
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Shared Hierarchical Caches with MT
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Caching Strategies (repeat)

 Remember:
 Write Back?
 Write Through?

 Cache coherence requirements
A memory system is coherent if it guarantees the following:
 Write propagation (updates are eventually visible to all readers)
 Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (later)
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Write Through Cache
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1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!



Write Back Cache
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1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2 
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later store X=2 from CPU1 lost

Requires write serialization!



A simple (?) example

 Assume C99:

 Two threads:
 Initially: a=b=0
 Thread 0: write 1 to a
 Thread 1: write 1 to b

 Assume non-coherent write back cache
 What may end up in main memory?
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struct twoint {
int a;
int b;

}



Cache Coherence Protocol

 Programmer can hardly deal with unpredictable behavior!

 Cache controller maintains data integrity
 All writes to different locations are visible

 Snooping
 Shared bus or (broadcast) network 

 Directory-based 
 Record information necessary to maintain coherence: 

E.g., owner and state of a line etc.
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Fundamental CC mechanisms

 Snooping
 Shared bus or (broadcast) network 
 Cache controller “snoops” all transactions
 Monitors and changes the state of the cache’s data
 Works at small scale, challenging at large-scale

E.g., Intel Broadwell

 Directory-based 
 Record information necessary to maintain coherence 

E.g., owner and state of a line etc.
 Central/Distributed directory for cache line ownership
 Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC
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Cache Coherence Parameters

 Concerns/Goals
 Performance
 Implementation cost (chip space, more important: dynamic energy)
 Correctness
 (Memory model side effects)

 Issues
 Detection (when does a controller need to act)
 Enforcement (how does a controller guarantee coherence)
 Precision of block sharing (per block, per sub-block?)
 Block size (cache line size?)
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An Engineering Approach: Empirical start

 Problem 1: stale reads
 Cache 1 holds value that was already modified in cache 2
 Solution:

Disallow this state
Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update
 Incorrect write back of modified line writes main memory in different 

order from the order of the write operations or overwrites neighboring 
data

 Solution:
Disallow more than one modified copy
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Invalidation vs. update (I)

 Invalidation-based:
 On each write of a shared line, it has to invalidate copies in remote caches
 Simple implementation for bus-based systems:

Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches

 Update-based:
 Local write updates copies in remote caches

Can update all CPUs at once
Multiple writes cause multiple updates (more traffic)
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Invalidation vs. update (II)

 Invalidation-based:
 Only write misses hit the bus (works with write-back caches)
 Subsequent writes to the same cache line are local
  Good for multiple writes to the same line (in the same cache)

 Update-based:
 All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often
 Supports producer-consumer pattern well
 Many (local) writes may waste bandwidth!

 Hybrid forms are possible!
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 Most common hardware implementation of discussed requirements
aka. “Illinois protocol”

Each line has one of the following states (in a cache):

 Modified (M)
 Local copy has been modified, no copies in other caches
 Memory is stale

 Exclusive (E)
 No copies in other caches
 Memory is up to date

 Shared (S)
 Unmodified copies may exist in other caches 
 Memory is up to date

 Invalid (I)
 Line is not in cache

MESI Cache Coherence
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Terminology

 Clean line:
 Content of cache line and main memory is identical (also: memory is up to 

date)
 Can be evicted without write-back

 Dirty line:
 Content of cache line and main memory differ (also: memory is stale)
 Needs to be written back eventually

Time depends on protocol details

 Bus transaction:
 A signal on the bus that can be observed by all caches
 Usually blocking

 Local read/write:
 A load/store operation originating at a core connected to the cache
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Transitions in response to local reads

 State is M
 No bus transaction

 State is E
 No bus transaction

 State is S
 No bus transaction

 State is I
 Generate bus read request (BusRd)

May force other cache operations (see later)
 Other cache(s) signal “sharing” if they hold a copy
 If shared was signaled, go to state S
 Otherwise, go to state E

 After update: return read value
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Transitions in response to local writes

 State is M
 No bus transaction

 State is E
 No bus transaction
 Go to state M

 State is S
 Line already local & clean
 There may be other copies
 Generate bus read request for upgrade to exclusive (BusRdX*)
 Go to state M

 State is I
 Generate bus read request for exclusive ownership (BusRdX)
 Go to state M
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Transitions in response to snooped BusRd

 State is M
 Write cache line back to main memory
 Signal “shared”
 Go to state S  (or E)

 State is E
 Signal “shared”
 Go to state S and signal “shared”

 State is S
 Signal “shared”

 State is I
 Ignore
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Transitions in response to snooped BusRdX

 State is M
 Write cache line back to memory
 Discard line and go to I

 State is E
 Discard line and go to I

 State is S
 Discard line and go to I

 State is I
 Ignore

 BusRdX* is handled like BusRdX!
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MESI State Diagram (FSM)
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Small Exercise

 Initially: all in I state
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Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x



Small Exercise

 Initially: all in I state
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Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Cache

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory



Optimizations?

 Class question: what could be optimized in the MESI protocol to 
make a system faster?
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Related Protocols: MOESI (AMD)

 Extended MESI protocol

 Cache-to-cache transfer of modified cache lines
 Cache in M or O state always transfers cache line to requesting cache
 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line
 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!
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MOESI State Diagram

33Source: AMD64 Architecture Programmer’s Manual



Related Protocols: MOESI (AMD)

 Modified (M): Modified Exclusive
 No copies in other caches, local copy dirty
 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared
 Exclusive right to make changes
 Other S copies may exist (“dirty sharing”)
 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):
 Same as MESI (one local copy, up to date memory)

 Shared (S):
 Unmodified copy may exist in other caches
 Memory is up to date unless an O copy exists in another cache

 Invalid (I):
 Same as MESI
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Related Protocols: MESIF (Intel)

 Modified (M): Modified Exclusive
 No copies in other caches, local copy dirty
 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):
 Same as MESI (one local copy, up to date memory)

 Shared (S):
 Unmodified copy may exist in other caches
 Memory is up to date

 Invalid (I):
 Same as MESI

 Forward (F):
 Special form of S state, other caches may have line in S
 Most recent requester of line is in F state
 Cache acts as responder for requests to this line
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Multi-level caches

 Most systems have multi-level caches
 Problem: only “last level cache” is connected to bus or network
 Snoop requests are relevant for inner-levels of cache (L1)
 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications
 On BusRd check if line is in M state in L1

It may be in E or S in L2!
 On BusRdX(*) send invalidations to L1
 Everything else can be handled in L2

 If L1 is write through, L2 could “remember” state of L1 cache line
 May increase traffic though
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Directory-based cache coherence

 Snooping does not scale
 Bus transactions must be globally visible
 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping
 Root becomes a bottleneck

 Directory-based schemes are more scalable
 Directory (entry for each CL) keeps track of all owning caches
 Point-to-point update to involved processors

No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI …
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© Markus Püschel
Computer Science

Basic Scheme

 System with N processors Pi

 For each memory block (size: cache 
line) maintain a directory entry
 N presence bits
 Set if block in cache of Pi

 1 dirty bit

 First proposed by Censier and 
Feautrier (1978)
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Directory-based CC: Read miss

 Pi intends to read, misses 

 If dirty bit (in directory) is off
 Read from main memory
 Set presence[i]
 Supply data to reader

 If dirty bit is on
 Recall cache line from Pj (determine by presence[])
 Update memory
 Unset dirty bit, block shared
 Set presence[i]
 Supply data to reader
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Directory-based CC: Write miss

 Pi intends to write, misses 

 If dirty bit (in directory) is off
 Send invalidations to all processors Pj with presence[j] turned on
 Unset presence bit for all processors
 Set dirty bit
 Set presence[i], owner Pi

 If dirty bit is on
 Recall cache line from owner Pj

 Update memory
 Unset presence[j]
 Set presence[i], dirty bit remains set
 Supply data to writer
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Discussion

 Scaling of memory bandwidth
 No centralized memory

 Directory-based approaches scale with restrictions
 Require presence bit for each cache 
 Number of bits determined at design time
 Directory requires memory (size scales linearly)
 Shared vs. distributed directory

 Software-emulation
 Distributed shared memory (DSM)
 Emulate cache coherence in software (e.g., TreadMarks)
 Often on a per-page basis, utilizes memory virtualization and paging
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Open Problems (for projects or theses)

 Tune algorithms to cache-coherence schemes
 What is the optimal parallel algorithm for a given scheme?
 Parameterize for an architecture

 Measure and classify hardware 
 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER 

Relaxed Memory Models” and have fun!
 RDMA consistency is barely understood!
 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?
 How to fix the problems with inconsistent values?
 Compiler support (issues with arrays)?
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Case Study: Intel Xeon Phi
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Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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Local read: RL= 8.6 ns
Remote read RR = 235 ns

Invalid read RI=278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”
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 Prediction for both in E state: 479 ns
 Measurement: 497 ns (O=18)

Single-Line Ping Pong
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 More complex due to prefetch

Multi-Line Ping Pong

Asymptotic Fetch 
Latency for each cache 

line (optimal 
prefetch!)

Number 
of CLs

Startup 
overhead

Amortization of 
startup
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 E state:
 o=76 ns
 q=1,521ns
 p=1,096ns

 I state:
 o=95ns
 q=2,750ns
 p=2,017ns

Multi-Line Ping Pong
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 E state:
 a=0ns
 b=320ns
 c=56.2ns

DTD Contention 
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