
Design of Parallel and High-Performance
Computing
Fall 2016
Lecture: Lock-Free and distributed memory

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

Motivational video: https://www.youtube.com/watch?v=PuCx50FdSic

Administrivia

 Final project presentation: Monday 12/19 (two weeks)

 Should have (pretty much) final results

 Show us how great your project is

 Some more ideas what to talk about:

Which architecture(s) did you test on?

How did you verify correctness of the parallelization?

Use bounds models for comparisons!

(Somewhat) realistic use-cases and input sets?

Emphasize on the key concepts (may relate to theory of lecture)!

What are remaining issues/limitations?

 Report will be due in January!

 Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Last unit today: Entertainment with bogus results!

2

Review of last lecture

 Various multi-process locks

 Bakery

 Spinning locks

Contention issues etc.

 Queue-based locks

CLH, MCS

 MCS – do not forget 

 RW locks

 Lock properties/issues (deadlock, priority inversion, blocking vs. spinning)

 Competitive spinning

3

DPHPC Overview

4

Goals of this lecture
 Locked and Lock-free tricks

 (coarse-grained locking)

 Fine-grained locking

 RW locking

 Optimistic synchronization

 Lazy locking

 Lock-free (& wait-free)

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Maybe: Scientific benchmarking!

 Common mistakes!

 How to improve current practice

 Important for your project

Brush up your statistics

5

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%. A good programmer will not be lulled
into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified” — Donald Knuth
(in Structured Programming with Goto Statements)

6

How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex

7

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

8

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

9

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

10

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

11

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

12

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

13

typedef struct {
int key;
node *next;
lock_t lock;

} node;

Hand-over-Hand (fine-grained) locking

14

a b c

Hand-over-Hand (fine-grained) locking

15

a b c

Hand-over-Hand (fine-grained) locking

16

a b c

Hand-over-Hand (fine-grained) locking

17

a b c

Hand-over-Hand (fine-grained) locking

18

a b c

Removing a Node

19

a b c d

remove(b)

Removing a Node

20

a b c d

remove(b)

Removing a Node

21

a b c d

remove(b)

Removing a Node

22

a b c d

remove(b)

Removing a Node

23

a b c d

remove(b)

Removing a Node

24

a c d

remove(b)
Why lock target node?

Concurrent Removes

25

a b c d

remove(c)
remove(b)

Concurrent Removes

26

a b c d

remove(b)
remove(c)

Concurrent Removes

27

a b c d

remove(b)
remove(c)

Concurrent Removes

28

a b c d

remove(b)
remove(c)

Concurrent Removes

29

a b c d

remove(b)
remove(c)

Concurrent Removes

30

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 31

Concurrent Removes

31

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 32

Concurrent Removes

32

a b c d

remove(b)
remove(c)

Uh, Oh

33

a c d

remove(b)
remove(c)

Uh, Oh

34

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking

35

Hand-Over-Hand Again

36

a b c d

remove(b)

Hand-Over-Hand Again

37

a b c d

remove(b)

Hand-Over-Hand Again

38

a b c d

remove(b)

Hand-Over-Hand Again

39

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

40

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

41

a c d

remove(b)

Removing a Node

42

a b c d

remove(b)
remove(c)

Removing a Node

43

a b c d

remove(b)
remove(c)

Removing a Node

44

a b c d

remove(b)
remove(c)

Removing a Node

45

a b c d

remove(b)
remove(c)

Removing a Node

46

a b c d

remove(b)
remove(c)

Removing a Node

47

a b c d

remove(b)
remove(c)

Removing a Node

48

a b c d

remove(b)
remove(c)

Removing a Node

49

a b c d

remove(b)
remove(c)

Removing a Node

50

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

51

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

52

a b c d

Wait!
remove(c)

Removing a Node

53

a b d

Proceed

to

remove(b)

Removing a Node

54

a b d

remove(b)

Removing a Node

55

a b d

remove(b)

Removing a Node

56

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

57

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

58

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

59

Optimistic: Traverse without Locking

60

b d ea

add(c) Aha!

Optimistic: Lock and Load

61

b d ea

add(c)

Optimistic: Lock and Load

62

b d ea

add(c)

c

What could go wrong?

63

b d ea

add(c) Aha!

What could go wrong?

64

b d ea

add(c)

What could go wrong?

65

b d ea

remove(b)

What could go wrong?

66

b d ea

remove(b)

What could go wrong?

67

b d ea

add(c)

What could go wrong?

68

b d ea

add(c)

c

What could go wrong?

69

d ea

add(c) Uh-oh

Validate – Part 1

70

b d ea

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

71

b d ea

add(c) Aha!

What Else Could Go Wrong?

72

b d ea

add(c)

add(b’)

What Else Could Go Wrong?

73

b d ea

add(c)

add(b’)b’

What Else Could Go Wrong?

74

b d ea

add(c)
b’

What Else Could Go Wrong?

75

b d ea

add(c)

c

Validate Part 2
(while holding locks)

76

b d ea

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations require two traversals of the list!

 Even contains() needs to check if node is still in the list!

77

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

78

typedef struct {
int key;
node *next;
lock_t lock;
boolean valid;

} node;

Lazy Removal

79

aa b c d c

Lazy Removal

80

aa b d

Present in list

c

Lazy Removal

81

aa b d

Logically deleted

Lazy Removal

82

aa b c d

Physically deleted

Lazy Removal

83

aa b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

84

Business as Usual

85

a b c

Business as Usual

86

a b c

Business as Usual

87

a b c

Business as Usual

88

a b c

remove(b)

Business as Usual

89

a b c

a not

marked

Business as Usual

90

a b c

a still

points

to b

Business as Usual

91

a b c

Logical

delete

Business as Usual

92

a b c

physical

delete

Business as Usual

93

a b c

Summary: Wait-free Contains

94

a 0 0 0a b c 0e1d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

95

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

96

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

97

a 0 0 0a b c 0e1c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

98

Problem…

99

a 0 0 0a b c 0e1c

(1) Logical Removal

(3) Physical

Removal 0d

(2) Node

added

The Solution: Combine Mark and Pointer

100

a 0 0 0a b c 0e1c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

101

Removing a Node

102

a b d

remove

b

remove

c

c

Removing a Node

103

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

104

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

105

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

106

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

107

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

108

Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies
lock-free)

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

109

Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve
the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

110

Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

111

Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

112

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each
write)

113

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer

Science” (Herlihy, Shavit)
 We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed

computing!

114

Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

115

Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

116

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))

return v; // I won!
else

return proposed[thread]; // thread won
}

Now you know everything 

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

117

Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a
process after all arrived)

118

Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems

119

asymptotic limit

Quick Example

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) =

 Class question: Do you know a faster method to accomplish the
same?

120

k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k?



 Independent of P, α, βs? Really?

121

Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

122

Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/Exscan, …

 Implementations of those (check current MPI libraries )

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

126

HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

127

Network DestinationSource

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

128

The LogP Model

129

Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

130

Simplifications

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

131

Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

132

Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

133

Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

134

Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the
LogP Model”

135

Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives
exactly once

136

P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

137
[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory
concepts → Partitioned Global Address Space (PGAS)

138

