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Goals of this lecture

= Motivate you!

m  What is parallel computing?
®* And why do we need it?

m  What is high-performance computing?
= What's a Supercomputer and why do we care?

= Basic overview of
® Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

Let us assume ...

= ... you were to build a machine like this ...

m ... we know how each part works
= There are just many of them!

Source: wikipedia

= Question: How many calculations per second are needed to emulate a brain?
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Can we do this today?
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Human Brain — No Problem!

m ... notso fast, we need to understand how to program those
machines ...

Human Brain — No Problem!

Simulating 1 second of human brain activity
takes 82,944 processors

Ryan Whitwam 1 Comment:

Scooped!

The brain is a deviously complex

biological computing device that even
the fastest supercomputers in the
@436 123 Q 108 24 world fail to emulate. Well, that's not
entirely true anymore. Researchers at
the Okinawa Institute of Technology
Graduate University in Japan and
Forschungszentrum Jiilich in Germany have managed to simulate a single second of human
brain activity in a very, very powerful computer
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Source: extremetech.com

Other problem areas: Scientific Computing

= Most natural sciences are simulation driven or are moving towards
simulation

Theoretical physics (solving the Schrédinger equation, QCD)

Biology (Gene sequencing)

Chemistry (Material science)

Astronomy (Colliding black holes)

Medicine (Protein folding for drug discovery)

= Meteorology (Storm/Tornado prediction)

= Geology (Oil reservoir management, oil exploration)

= and many more ... (even Pringles uses HPC)

Other problem areas: Commercial Computing

m Databases, data mining, search
= Amazon, Facebook, Google

m Transaction processing
= Visa, Mastercard

m Decision support
= Stock markets, Wall Street, Military applications

m Parallelism in high-end systems and back-ends
= Often throughput-oriented

= Used equipment varies from COTS (Google) to high-end redundant
mainframes (banks)

Other problem areas: Industrial Computing

m Aeronautics (airflow, engine, structural mechanics,
electromagnetism)

= Automotive (crash, combustion, airflow)

= Computer-aided design (CAD)

= Pharmaceuticals (molecular modeling, protein folding, drug design)
m Petroleum (Reservoir analysis)

m Visualization (all of the above, movies, 3d)

What can faster computers do for us?

m Solving bigger problems than we could solve before!

= E.g., Gene sequencing and search, simulation of whole cells, mathematics
of the brain, ...

= The size of the problem grows with the machine power
-2 Weak Scaling

= Solve today’s problems faster!

= E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars,
weapons, ...)

= The machine power grows with constant problem size
- Strong Scaling




High-Performance Computing (HPC)

= a.k.a. “Supercomputing”

= Question: define “Supercomputer”!

High-Performance Computing (HPC)

a.k.a. “Supercomputing”

Question: define “Supercomputer”!

= “Asupercomputer is a computer at the frontline of contemporary processing
capacity--particularly speed of calculation.” (Wikipedia)

= Usually quite expensive ($s and kWh) and big (space)

HPC is a quickly growing niche market

= Not all “supercomputers”, wide base

= |mportant enough for vendors to specialize

= Very important in research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”
“Microsoft: Delivering High Performance Computing to the Masses”
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Swiss 'GPU Supercomputer' Will Be Fastest
in Europe
Tiffany Trader
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The NVIDIA GPU Technology Conference is in full-swing today in San Jose, Calif. The
annual event kicked off this morning with a keynote from NVIDIA CEO Jen-Hsun Huang,
who revealed that the Swiss National Supercomputing Center (CSCS) is building Europe's
fastest GPU-accelerated supercomputer, an extension of a Cray system that was
announced last year.
As Cray Vice President, Storage & Data Management Barry Bolding told HPCwire, this will
be the first Cray supercomputer equipped with Intel Xeon processors and NVIDA GPUs.
CSCS is part of ETH Zurich, one of the top universities in the world and the alma mater of
Albert Einstein. The supercomputing center installed phase one of its shiny new Cray 18

XC30 back in December 2012,




Blue Waters in 2009

Imagine you’re designing.a $500 M
supercomputer, and all you have is:

This is why you need to understand
performance expectations well!

Blue Waters in 2012

History and Trends
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High-Performance Computing grows quickly

m Computers are used to automate many tasks

m Still growing exponentially ok pikh

The What westhrong atRBS

= New uses discovered continuously EcOnOmMist ||| seiohimubisian: besam

The £ woas Russia

4 || Therightia et anddogs

ta deluge

IDC, 2007: “The overall HPC server market grew
by 15.5 percent in 2007 to reach $11.6 billion [...]
while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to $54.4”

ANO HOW TO HANOLE I: A 14-PAGE SPECIAL REPORT

IDC, 2009: “expects the HPC technical server
market to grow at a healthy 7% to 8% yearly
rate to reach revenues of $13.4 billion by 2015.”

“The non-HPC portion of the server market was i
actually down 20.5 per cent, to $34.6bn” i

Source: The Economist
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How to increase the compute power?
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How to increase the compute power?

Not an option anymore!
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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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So how to invest the transistors?

= Architectural innovations
= Branch prediction, Tomasulo logic/rename register, speculative execution,

= Help only so much ®

= What else?
= Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell
B.E., GPUs, MIC
= We call this “cores” these days
= Also, more intelligent devices or higher bandwidths (e.g., DMA controller,
intelligent NICs)

Source: 1BM Source: Intel

Source: NVIDIA

Towards the age of massive parallelism

m Everything goes parallel
= Desktop computers get more cores
2,4,8, soon dozens, hundreds?
= Supercomputers get more PEs (cores, nodes)
> 3 million today
> 50 million on the horizon
>1 billion in a couple of years (after 2020)

m Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
Al starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
Al is executed while A2 is running
Usually requires separate resources!

Goals of this lecture

= Motivate you!

= What is parallel computing?
= And why do we need it?

m  What is high-performance computing?
®* What's a Supercomputer and why do we care?

m Basic overview of
® Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

Granularity and Resources

Parallel Resource

Activities
= Micro-code instruction = |nstruction-level parallelism
= Machine-code instruction = Pipelining
(complex or simple) = VLW

= Superscalar
= SIMD operations
= Vector operations




Resources and Programming

Parallel Resource
= |nstruction-level parallelism
= Pipelining
= VLW
= Superscalar
= SIMD operations
= Vector operations

Programming
= Compiler
= (inline assembly)
= Hardware scheduling

= Compiler (inline assembly)
® Libraries

Historic Architecture Examples - -~

m Systolic Array
= Data-stream driven (data counters)
= Multiple streams for parallelism

= Specialized for applications (reconfigurable)

b values

m Dataflow Architectures

= No program counter, execute instructions when all input arguments are
available
((a + b) * (c +

abcd a b

® Fine-grained, high overheads
Example: compute f = (a+b) * (c+d)

actor

bbby

Source: ni.com

d))

Source: isi.edu
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Von Neumann Architecture

= Program counter > Inherently serial!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore

(fault tolerance) (ubiquituous)

Parallel Architectures 101
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m Shared Memory Programming (SM/UMA)
= Shared address space
= |mplicit communication

UMA
® Hardware for cache-coherent remote memory access
= Cache-coherent Non Uniform Memory Access (cc NUMA) 4 1 2 3
m (Partitioned) Global Address Space (PGAS)
® Remote Memory Access | mefory |
= Remote vs. local memory (cf. ncc-NUMA) ns

m Distributed Memory Programming (DM)
= Explicit communication (typically messages)
" Message Passing

LAt

Shared Memory Machines

m Two historical architectures:
= “Mainframe” — all-to-all connection
between memory, I/0 and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?

Source: IBM




Shared Memory Machines

m Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, /0 and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?
Answer: Cost can be cut with multistage connections (butterfly)

Source: IBM

= “Minicomputer” — bus-based connection
All traditional SMP systems
High latency, low bandwidth (cache is important)
Tricky to achieve highest performance (contention)
Low cost, extensible

Shared Memory Machine Abstractions
GRONUR0

memory

= Used since 40+ years umA

= Any PE can access all memory
= Any I/O can access all memory (maybe limited)

m OS (resource management) can run on any PE
= Can run multiple threads in shared memory

= Communication through shared memory
= |oad/store commands to memory controller
= Communication is implicit
= Requires coordination
m Coordination through shared memory
= Complex topic
= Memory models

Shared Memory Machine Programming
GRONONS

memory

UMA

m Threads or processes
= Communication through memory

m Synchronization through memory or OS objects
= Lock/mutex (protect critical region)
= Semaphore (generalization of mutex (binary sem.))
= Barrier (synchronize a group of activities)
= Atomic Operations (CAS, Fetch-and-add)
= Transactional Memory (execute regions atomically)

m Practical Models:
= Posix threads
= MPI-3
= OpenMP
= Others: Java Threads, Qthreads, ...

An SMM Example: Compute Pi

m Using Gregory-Leibnitz Series:
oo (—1*
4 Zk:o 2k+1
= |terations of sum can be computed in parallel
® Needs to sum all contributions at the end

3.3
3.2 -
A
3.1 HuEE -
MM®1e 20 30 40 50"

Source: mathworld.wolfram.com

int main( int argc, char *argv[] )

{

Pthreads Compute Pi Example

int n=10000;
double *resultarr;

// definitions .. int nthreads;

thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t));

resultarr= (double*)malloc(nthreads * sizeof(double)); void *compute_pi(void *data) {

inti, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (i=0; i<nthreads; ++i) {
int ret = pthread_create( &thread_arr[i], NULL,
compute_pi, (void*) i);

} for (j=0; j<n; +4j) {
for (i=0; i<nthreads; ++i) { h =1.0/(double) n;
sum = 0.0;

pthread_join( thread_arr[i], NULL);
) for (i = myid + 1; i <= n; i += nthreads) {
x=h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}

mypi = h * sum;

pi=0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT)); }
resultarr[myid] = mypi;

}

Additional comments on SMM

= OpenMP would allow to implement this example much simpler (but
has other issues)

m Transparent shared memory has some issues in practice:
= False sharing (e.g., resultarr[])
= Race conditions (complex mutual exclusion protocols)

= Little tool support (debuggers need some work)

m Achieving performance is harder than it seems!




Distributed Memory Machine Programming

DM
= Programming model: Message Passing (MPI, PVM)

= Communication through messages or group operations (broadcast,
reduce, etc.)

= Explicit communication between PEs
= Message passing or channels

=  Only local memory access, no direct access to
remote memory
®* No shared resources (well, the network)

= Synchronization through messages (sometimes unwanted side effect) or
group operations (barrier)

= Typically supports message matching and communication contexts

DMM Example: Message Passing

Lidd

Match Receive Yt P’

Addess Y
Send X, Qt

Addess

Local pocess

Local pocess addess space

addess space

Process P Process Q

Source: John Mellor-Crummey

= Send specifies buffer to be transmitted

= Recv specifies buffer to receive into

= Implies copy operation between named PEs
= Optional tag matching

= Pair-wise synchronization (cf. happens before)

DMM MPI Compute Pi Example

int main( int argc, char *argv(] ) {
// definitions
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

DM
double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double)n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MP|_COMM_WORLD);
}
t+=MPI_Wtime();

if (!myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPI_Finalize();

DMM Example: PGAS o | | 2] 2

m Partitioned Global Address Space
= Shared memory emulation for DMM
Usually non-coherent
= “Distributed Shared Memory”
Usually coherent

memory

PGAS

m Simplifies shared access to distributed data
= Has similar problems as SMM programming
= Sometimes lacks performance transparency

Local vs. remote accesses

= Examples:
= UPC, CAF, Titanium, X10, ...

How to Tame the Beast?

= How to program large machines?

= No single approach, PMs are not converging yet
= MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), ...

m  Architectures converge

= General purpose nodes connected by general purpose or specialized
networks

= Small scale often uses commodity networks
= Specialized networks become necessary at scale

m Even worse: accelerators (not covered in this class, yet)

Practical SMM Programming: Pthreads

Covered in example, small set of functions for thread creation and management

User-level Threads Kernel-level Threads
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Kernel
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Kernel
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Practical SMM Programming: OpenMP

Source: OpenMP.org

m  Fork-join model

master thread TR - s 1 &
~ -
4*. ,,,,, 2 e — & > - threads s
threads threads
3 |

parallel region parallel region parallel region

m Types of constructs:

| master thread I master thread l master thread
FORK FORK FORK
+ Tasks
b ‘ b i e ‘ S#IO* I e | ls"*El e
JOIN JOIN JOIN
|maslwthmad I master thread I master thread Source: Blaise Barney, LL

NL

OpenMP General Code Structure

#include <omp.h>

main () {
intvarl, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband
}
// Resume serial code

Source: Blaise Barney, LLNL
5

Practical PGAS Programming: UPC

m  PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3

Shared

c[0], c[4],.. c[1], ¢[5],.. c[2], c[6],.. c[3], ¢[7],-

a a a a
Private

= Many helper library functions
= Collective and remote allocation
= (Collective operations

= Complex consistency model

Practical DMM Programming: MPI-1

MPI_COMM_WORLD .
e Helper Functions
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Collection of 1D address spaces

Source: Blaise Barney, LLNL

Complete Six Function MPI-1 Example

#include <mpi.h>

int main(int argc, char **argv) {
int myrank, sbuf=23, rbuf=32;
MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {

MPI_Send(&sbuf, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */

MPI_COMM_WORLD);
}else {
MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

/* default communicator */

MPI_Finalize();
}

MPI-2/3: Greatly enhanced functionality

m Support for shared memoryinSMMdomains@ @ @ (%) g) @ @ @
[ ] [

e

memory
UMA UMA
0 1 2 3
= Support for Remote Memory Access Programming
= Direct use of RDMA
® Essentially PGAS I melnory

PGAS

= Enhanced support for message passing communication
= Scalable topologies
= More nonblocking features
L many more




MPI: de-facto large-scale prog. standard

Using MPI
Portable Parallel Programming Modern Features of the
with the Message-Passing Interface

third edition

Message-Passing Interface

1 Gropp

William Gropp

Ewing Lusk

Basic MPI

Accelerator example: CUDA

Hierarchy of Threads
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Accelerator example: CUDA

Host Code

#define N 10
int main( void ) {

int a[N], b[N], c[N];

int *dev_a, *dev_b, *dev_c;

// allocate the memory on the GPU
cudaMalloc( (void**)&dev_a, N * sizeof(int) );
cudaMalloc( (void**)&dev_b, N * sizeof(int) );
cudaMalloc( (void**)&dev_c, N * sizeof(int) ); }
//fill the arrays 'a’ and 'b' on the CPU

for (int i=0; i<N; i++) {a[i] =-i; b[i] =i *i; }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice );

dev_b, b, N *si int), cud.

add<<<N,1>>>( dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU
cudaMemcpy( ¢, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost );
// free the memory allocated on the GPU

cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c);

}

The Kernel

__global__void add( int *a, int *b, int *c ) {
int tid = blockldx.x;
// handle the data at this index
if (tid < N)
c[tid] = a[tid] + b[tid];

yHostToDevice );

OpenACC / OpenMP 4.0

= Aims to simplify GPU programming

m  Compiler support
= Annotations!

#define N 10
int main( void ) {
int a[N], b[N], c[N];
#pragma acc kernels
for (inti=0;i<N; ++)
cli] = a[i] + b[i];
}

More programming models/frameworks

= Not covered:
= SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
= Directives: OpenHMPP, PVM, ...
= PGAS: Coarray Fortran (Fortran 2008), ...
= HPCS: IBM X10, Fortress, Chapel, ...
= Accelerator: OpenCL, C++AMP, ...

m This class will not describe any model in more detail!
= There are too many and they will change quickly (only MPI made it >15 yrs)

= No consensus, but fundamental questions remain:
= Data movement
= Synchronization
= Memory Models
= Algorithmics
= Foundations

Goals of this lecture

= Motivate you!

= What is parallel computing?
= And why do we need it?

m  What is high-performance computing?
®* What's a Supercomputer and why do we care?

m Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures
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Architecture Developments

v 4 >
g 5 » » 1
- - S .

<1999 '00-'05 '06-'12 13720 >2020
distributed large cache- large cache- coherent and non- largely non-
memory coherent multicore  coherent multicore coherent coherent
s manycore and accelerators and
multicores
through through coherent through coherent multicores communicating
messages memory access memory access communicating through remote
and messages and remote direct through memory direct memory
memory access access and remote

access

direct memory
access

Sources: various vendors

Computer Architecture vs. Physics

m Physics (technological constraints)
= Cost of data movement
= Capacity of DRAM cells
= Clock frequencies (constrained by end of Dennard scaling)
= Speed of Light
= Melting point of silicon

m Computer Architecture (design of the machine)
= Power management
= |SA / Multithreading
= SIMD widths

“Computer architecture, like other architecture, is the art of determining the needs of
the user of a structure and then designing to meet those needs as effectively as possible
within economic and technological constraints.” — Fred Brooks (IBM, 1962)

Have converted many former “power” problems into “cost” problems

Credit: John Shalf (LBNL)

Low-Power Design Principles (2005)

Intel Atom

m Cubic power improvement with lower
clock lgte due tg V*

m Slower clock rates enable use of
simpler cores

m Simpler cores use less area (lower
leakage) and reduce cost

= Tailor design to application to REDUCE
WASTE

63
Credit: John Shalf (LBNL)

Low-Power Design Principles (2005)

Intel Atom

Power>5 (server)
= 120W@1900MHz
= Baseline

Intel Core2

= Intel Core2 sc (laptop) :

= 15W@1000MHz

= 4x more FLOPs/watt than baseline
| = Intel Atom (handhelds)

= 0.625W@800MHz

= 80x more
= GPU Core or XTensa/Embedded

=" 0.09W@600MHz

= 400x more (80x-120x sustained)
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Credit: John Shalf (LBNL)

Low-Power Design Principles (2005)

= Powers5 (server)
= 120W@1900MHz
= Baseline

= Intel Core2 sc (laptop) :
| = 15W@1000MHz
| = 4x more FLOPs/watt than baseline
= Intel Atom (handhelds)
| = 0.625W@800MHz
HE = 80x more
= GPU Core or XTensa/Embedded
= 0.09W@600MHz
= 400x more (80x-120x sustained)

Even if each simple core is 1/4th as computationally efficient as complex core, you
can fit hundreds of them on a single chip and still be 100x more power efficient.

Credit: John Shalf (LBNL)

Heterogeneous Future (LOCs and TOCs)

Tiny core ~.0:23m=
Lots of them!

Big cores (very few)

s HE e

o i 2
b ‘i Ccrﬁé C;r‘iﬁ_-
I @@ -

Sroo o

Throughput Optimized Core
(TOC)

Most energy efficient if you DO
have a lot of parallelism!

Latency Optimized Core
(LoC)

Most energy efficient if you
don’t have lots of parallelism

Credit: John Shalf (LBNL)




Data movement — the wires

m Energy Efficiency of copper wire:
= Power = Frequency* Length / cross-section-agea

Photonics could break through
the bandwidth-distance limit

= Capacitance ~= Area of Transistor
= Transistor efficiency improves as you shrink it

m  Net result is that moving data on wires is starting to cost more energy than
computing on said data (interest in Silicon Photonics)

Credit: John Shalf (LBNL)

Pin Limits

= Moore’s law doesn’t apply to adding pins to package

= 30%+ per year nominal Moore’s Law
= Pins grow at ~1.5-3% per year at best

= 4000 Pins is aggressive pin package

= Half of those would need to be for power and ground

= Of the remaining 2k pins, run as differential pairs

= Beyond 15Gbps per pin power/complexity costs hurt!

= 10Gpbs * 1k pins is ~1.2TBytes/sec

= 2.5D Integration gets boost in pin density
= Butit’s a 1time boost (how much headroom?)

= 4TB/sec? (maybe 8TB/s with single wire signaling?)

TSVs

High-Speed Link

Credit: John Shalf (LBNL) QOO0

Wide Data Path

Die Photos (3 classes of cores)

FHE

Shared L3 Cache**
For v e v s!. m

tensilica
y 4

Credit: John Shalf (LBNL)
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Strip down to the core

y 4
tensilica
y 4

Credit: John Shalf (LBNL)

Actual Size

y 023mmeo
tensilica - N
o 3

Credit: John Shalf (LBNL)
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Basic Stats

Core Energy/Area est.

Area: 12.25 mm?
Power: 2.5W
Clock: 2.4 GHz
E/op: 651 pj

Area: 0.6 mm?
Power: 0.3W (<0.2W)
Clock: 1.3 GHz
E/op: 150 (75) pj

Area: 0.046 mm?
# ’I 0.23mm S Power: 0.025W
ensilica = 3 Clock: 1.0 GHz

3 E/op: 22 pj

Credit: John Shalf (LBNL)

Wire Energy

Assumptions for 22nm

Energy:

100 fj/bit per mm
64bit operand

1mm="6pj
20mm="~120pj
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When does data movement dominate?

Core Energy/Area est. Data Movement Cost

Compute Op ==

data movement Energy @
108mm

Energy Ratio for 20mm
0.2x

Area: 12.25 mm?

Power: 2.5W
Clock: 2.4 GHz
E/op:

651 pj

Compute Op ==
data movement Energy @
12mm

Area: 0.6 mm?
Power: 0.3W (<0.2W)
Clock: 1.3 GHz

E/op: 150 (75) pj

Energy Ratio for 20mm
1.6x

Compute Op ==

data movement Energy @
3.6mm

Energy Ratio for 20mm
5.5x

Area: 0.046 mm?
Power: 0.025W
Clock: 1.0 GHz
Efop: 22 pj

A& 0.23mm¢
tensilica r_nm S
y 4

3

Credit: John Shalf (LBNL)

Case Study 1: IBM POWER7 IH (BW)

|/I1

SuperNode
1 HHH 1111
(I NI [

(1024 cores)

Drawer
(256 cores)

On-line Storage

SMP node
(32 cores)

P7 Chip
(8 cores)

Source: IBMINCSA

Near-line Storage

POWER?7 Core

= Execution Units
= 2 Fixed point units
= 2 Load store units
=4 Double precision floating point
= 1Branch
= 1 Condition register
=1 Vector unit
= 1 Decimal floating point unit
= 6 wide dispatch
= Recovery Function Distributed
=_1,2,4 Way SMT Support
= Out of Order Execution
= 32KB I-Cache
= 32KB D-Cache
= 256KB L2
= Tightly coupled to core

Source: IBWNCSA -
75

POWER? Chip (8 cores)

= Base Technology
= 45nm, 576 mm?
= 1.2 B transistors

= Chip

= 8cores

= 4 FMAs/cycle/core

= 32 MB L3 (private/shared)

= Dual DDR3 memory
128 GiB/s peak bandwidth
(1/2 byte/flop)

= Clock range of 3.5 — 4 GHz

Source: IBWNCSA

Quad Chip Module (4 chips)

cxan
B

8 uP 8 uP —x
= 32cores P70 P71 " e
= 32 cores*8 F/core*4 GHz = 1 TF - : ; =S .
m 4 threads per core (max) ° 9
Hw Z K
= 128 threads per package 3
= 4x32 MiB L3 cache oz
= 512 GB/s RAM BW (0.5 B/F)
= 800 W (0.8 W/F) ==_
e P73
a2
e |

Source: IBMINCSA

Adding a Network Interface (Hub)

m Connects QCM to PCl-e

= Two 16x and one 8x PCl-e slot

= Connects 8 QCM's via low

latency, high bandwidth,
copper fabric.

= Provides a message passing
mechanism with very
high bandwidth

= Provides the lowest possible
latency between 8 QCM's

T

Source: IBMINCSA




1.1 TB/s POWER7 IH HUB

nlnl [:;uu
| [[[[[]]
. A B ;; .
= 192 GB/s Host Connection
m 336 GB/s to 7 other local nodes .
Torrent %
m 240 GB/s to local-remote nodes s
= 320 GB/s to remote nodes Hub Chi
Diff PHYs

= 40 GB/s to general purpose I/O

i
= cf. “The PERCS interconnect” @HotI’10 [

| f
! il

ource: IBWNCSA

P7 IH Drawer

* 8 nodes

* 32 chips

> 256 cores /‘

First Level Interconnect
»L-Local 2
»HUB to HUB Copper Wiring
»256 Cores

Source: IBMINCSA

P7 IH Supernode

Second Level Interconnect

=Optical ‘L-Remote’ Links from HUB
=4 drawers

=1,024 Cores

Super Node
(32 Nodes / 4 CEC)

T AT
=g
e
nnnn_

TN )
N

Source: IBWNCSA

Case Study 2: Cray Cascade (XC30)

m Biggest current installation at CSCS! ©
= >2k nodes

m Standard Intel x86 Sandy Bridge Server-class CPUs

PP T T T T T T

‘/i i/i e

backplanes
connected with
copper cables in a
group:
“Black Network”

y

Optical cables
interconnect
groups
“Blue Network™

N Aries connected by
backplane
“Green Network”

86

Cray Cascade Network Topology

m  All-to-all connection among groups (“blue network”)




Goals of this lecture

= Motivate you!

= What is parallel computing?
= And why do we need it?

m  What is high-performance computing?
= What's a Supercomputer and why do we care?

= Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies

m Provide context for coming lectures

DPHPC Lecture

= You will most likely not have access to the largest machines
= But our desktop/laptop will be a “large machine” soon
= HPCis often seen as “Formula 1” of computing (architecture experiments)

m  DPHPC will teach you concepts!
= Enable to understand and use all parallel architectures
® From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI — same concepts, different syntax
= No particular language (but you should pick/learn one for your project!)
Parallelism is the future:

WE NEED TO FINISH YOUR YOU MIGHT NEED

PROGRAM TWICE AS FAST, TO TRALN HIM TELL ME AGAIN

SO TM ADDING A PERSON A LITTLE BEFORE WHAT THE BIG

TO HELP YOU. WES PRODUCTIVE GLOWING
THING TS

!
\

S Adams £l SCOTIAGAN S8 0L CON
1

Related classes in the SE focus

= 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2017
Lecturer: Prof. M. Vechev

m 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-

spring16/course.html
Spring 2017
Lecturer: Prof. M. Pueschel

m This list is not exhaustive!

DPHPC Overview

DPHPC
- locality parallelism
@ i
=} T
g -caches vector ISA shared memory distributed memory
< - memory hierarchy
2 \ cache coherency |
] T 1
P \__memory | distributed
e " models ' " algorithms '
o
S locks group commu-
8 lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law |

I 1
3 __memory PRAM | L LogP |
el T T L 1
g o-P

1/0 complexity

balance principles | balance principles I
Little's Law scheduling




