
Spring Term 2015

Operating Systems and Networks

Project 1: Reliable Transport

Assigned on: 17th April 2015
Due by: 7th May 2015

1 Introduction

In this project, your task is to implement a reliable sliding window transport layer on top of
the User Datagram Protocol (UDP). Please check Lecture 8: Transport Layer on the course
website for details about the reliable sliding window transport layer.

In this lab, you are provided with a library (rlib.h and rlib.c), and you have to implement some
functions and data structures for which skeletons are provided (in reliable.c). You will probably
find it useful to look through rlib.h, as several useful helper functions have been provided.

In general, your implementation should:

• Handle packet drops

• Handle packet corruption

• Provide trivial flow control

• Provide a stream abstraction

• Allow multiple packets to be outstanding at any time (using a limit given to your program
as a run-time parameter, via the -w option)

• Handle packet reordering

• Detect any single-bit errors in packets

You will implement the client and server component of a transport layer. The client reads a stream
of data (from STDIN), breaks it into fixed-sized packets suitable for UDP transport, prepends a
control header to the data, and sends each packet to the server. The server reads these packets
and writes the corresponding data, in order, to a reliable stream (STDOUT). Figure 1 presents a
high-level overview of the system.

Client Server
UDPstdin stdout

Figure 1: Overview of the reliable transport protocol

2 Requirements

Your transport layer must support the following:

• Each side’s output should be identical to the other side’s input, regardless of a lossy, con-
gested, or corrupting network layer. You will ensure reliable transport by having the recipient
acknowledge packets received from the sender; the sender will detect missing acknowledge-
ments and resend the dropped or corrupted packets.

• You should handle connection tear down properly. When you read an EOF, you should
send a zero-length payload (12-byte packet) to the other side to indicate the end of file
condition. When you receive a zero-length payload and have written the contents of all
previous packets (i.e., have written all output data with conn output), you should send an
EOF to your output by calling conn output with a len of 0.

• You should support arbitrary window sizes. The window size is supplied by the -w command-
line option, which will show up as the window field in the config common data structure
passed to the rel create function that you have to implement.

• Your server and client should ensure that data is written in the correct order, even if the
network layer reorders packets. Your receiver should buffer as many packets as the client
may send concurrently. In other words, the sender window size (SWS) should equal the
receiver window size (RWS).

• The sender should resend a packet if the receiver does not acknowledge it within an appro-
priate time period. You need not implement any back-off like TCP, and can instead merely
send packet(s) whenever a sent packet has gone unacknowledged for the timeout period. The
timeout period in milliseconds is supplied to you by the timeout field of the config common

structure. The default is 2000 msec, but you may change this with the -t command-line
option.

• Acknowledgements should be cumulative rather than selective. Like TCP, you acknowledge
the next sequence number you are expecting to receive, which is 1 more than the largest
in-order-sequence number you have received. You do not have to handle sequence number
overflowing and wrapping in the lifetime of a connection.

• You can retry packets infinitely many times, and should make sure you retry at least five
times, after which, if you want, the client can terminate the connection with an error. You
can call rel destroy to destroy the state associated with a connection when you give up on
retransmitting.

• Note: For debugging printfs you should use the Standard Error fprintf (stderr, ...)

and not print on standard output. This is because standard output is being used for the
actual program output, and it will become confusing if the two ouputs are mixed.

3 Implementation Details

3.1 Packet Types and Fields

There are two kinds of packets, Data packets and Ack-only packets. You can tell the type of a
packet by its length. Ack packets are 8 bytes, while Data packets vary from 12 to 512 bytes. The
packet format is defined in rlib.h:

struct packet {
u i n t 1 6 t cksum ; /∗ Ack and Data ∗/
u i n t 1 6 t l en ; /∗ Ack and Data ∗/
u i n t 3 2 t ackno ; /∗ Ack and Data ∗/
u i n t 3 2 t seqno ; /∗ Data Only ∗/
char data [5 0 0] ; /∗ Data only ; Not always 500 bytes , can be l e s s ∗/

2

} ;
typedef struct packet packe t t ;

Every Data packet contains a 32-bit sequence number as well as 0 or more bytes of payload. The
length, seqno, and ackno fields are always in network byte order (meaning you will have to use
htonl/htons to write those fields and ntohl/ntohs to read them). Both Data and Ack packets
contain the following fields:

• cksum: 16-bit IP checksum (you can set the cksum field to 0 and use the cksum(const
void *, int) function on a packet to compute the value of the checksum that should be in
there). Note that you should not call htons on the checksum value produced by the cksum
function–it is already in network byte order.

• len: 16-bit total length of the packet. This will be 8 for Ack packets, and 12 + payload-
size for data packets (since 12 bytes are used for the header). An end-of-file condition is
transmitted to the other side of a connection by a data packet containing 0 bytes of payload,
and hence a len of 12. Note: You must examine the length field, and should not assume
that the UDP packet you receive is the correct length. The network might truncate or pad
packets.

• ackno: 32-bit cumulative acknowledgment number. This says that the sender of a packet
has received all packets with sequence numbers earlier than ackno, and is waiting for the
packet with a seqno of ackno. Note that the ackno is the sequence number you are waiting
for, that you have not received yet. The first sequence number in any connection is 1, so if
you have not received any packets yet, you should set the ackno field to 1.

The following fields only exist in a data packet:

• seqno: Each packet transmitted in a stream of data must be numbered with a seqno. The
first packet in a stream has seqno 1. Note that in TCP, sequence numbers indicate bytes. By
contrast, this protocol just numbers packets. That means that once a packet is transmitted,
it cannot be merged with another packet for retransmission. This should simplify your
implementation.

• data: Contains (len - 12) bytes of payload data for the application.

To conserve packets, a sender should not send more than one unacknowledged Data frame with
less than the maximum number of bytes (500).

3.2 Implementations Details

In this project, you are provided with a library (rlib.h/rlib.c). The following details the six
functions that you will be implementing for this project.

• rel create: The reliable state structure encapsulates the state of each connection. The
structure is typedefed to rel t in rel.h, but the contents of the structure are defined in
reliable.c, where you should add more fields as needed to keep your per-connection state. A
rel t is created by the rel create function. The library will call rel create directly for
you.

• rel destroy: A rel t is deallocated by rel destroy(). The library will call rel destroy

when it receives an ICMP port unreachable (signifying that the other end of the connection
has died). You should also call rel destroy when all of the following hold:

– You have read an EOF from the other side (i.e., a Data packet of len 12, where the
payload field is 0 bytes).

– You have read an EOF or error from your input (conn input returned -1).

3

– All packets you have sent have been acknowledged.

– You have written all output data with conn output.

Note that to be correct, at least one side should also wait around for twice the maximum
segment lifetime in case the last ack it sent got lost, the way TCP uses the FIN WAIT state,
but this is not required.

• rel recvpkt: When a packet is received, the library will call rel recvpkt and supply you
with the rel t.

• rel read: To get the data that you must transmit to the receiver, call conn input. conn input

reads from standard input. If no data is available, conn input will return 0. At that point,
the library will call rel read once data is again available again, so that you can once again
call conn input. Do not loop calling conn input if it returns 0; simply return and wait for
the library to invoke rel read!

• rel output: To output data you have received in decoded UDP packets, call conn output.
conn output function outputs data to STDOUT. You may find the function conn bufspace

useful–it tells you how much space is available for use by conn output. If you try to write
more than this, conn output may return that it has accepted fewer bytes than you gave it.
You must flow-control the sender by not acknowledging packets if there is no buffer space
available for conn output. You should schedule the calling of rel output.

• rel timer: The function rel timer is called periodically, currently at a rate 1/5 of the
retransmission interval. You can use this timer to inspect packets and retransmit packets
that have not been acknowledged. Do not retransmit every packet every time the timer is
fired! You must keep track of which packets need to be retransmitted when.

4 Task

Your task is to implement the six functions (rel create, rel destroy, rel recvpkt, rel read,
rel output, rel timer) described in Section 3.2.

Download and untar the project package from the course website. The six functions you need
to implement are all in the file reliable.c. This is the only file you need to modify for the
assignment. You should be able to run the command make to build the reliable program.

When you are done with the project, two instances of reliable should be able to talk to one
another. An example of the working program is given here.

On one shell, run:

ethz : ˜/ t e s t / r e l i a b l e > . / r e l i a b l e 6666 −w 5 l o c a l h o s t :5555
[l i s t e n i n g on UDP port 6666]
He l lo . From port 6666 to port 5555

On another shell, run:

ethz : ˜/ t e s t / r e l i a b l e > . / r e l i a b l e 5555 −w 5 l o c a l h o s t :6666
[l i s t e n i n g on UDP port 5555]
He l lo . From port 6666 to port 5555

Now anything typed on one shell will show up on the other shell.

The value specified for the -w argument is stored in the window field of the config common data
structure. You should access it as cc->window in the rel create function, and store the value
somewhere in the reliable state structure so you have access to it in other functions.

For debugging purposes, you may find it useful to run ./reliable with -d command-line option.
This option will print all the packets your implementation sends and receives.

4

5 Testing

There is also a tester program called tester, which is the same program we will use to assess your
project. tester is provided as an x86 64 linux binary. Hence, for testing, please use any x86 64
linux-based operating systems. If you do not have access to such operating system, please use the
virtual machine from the link below. Both username and password to login to the virtual machine
are osnet.
https://polybox.ethz.ch/public.php?service=files&t=400a93f54a13402aa9609b941220ccc9

Run the tester giving it your ./reliable program as an argument (e.g., ./tester -w 2 ./reliable). By
default the tester program will run all tests, and set a window size of one. The following options may
be useful to you:

• -w N : sets the window size to N. This also passes the -w option to your reliable program

• -v : shows the stderr output of your reliable program.

• -T N : runs test number N instead of running all of them. This is useful for debugging one particular
test. There are 14 tests.

• --gdb: spawns a copy of your reliable program, prints a copy of your reliable program, and waits
for you to press return. This is useful if you want to attach to the process in the gdb debugger
(using the command “attach PID”).

6 Assessment

We will assess your project using the provided tester on the virtual machine provided in the course
website. Make sure your code compiles and runs on the virtual machine supplied on the
course website.

We will run the tester with several different window sizes (e.g., ./tester -w 2 ./reliable). We will test
each individual part three times, counting the best result of the three.

7 Submission

To submit the project, you must do two things:

• Run the command make submit, this should create a file called reliable.tar.gz

• Please rename the file to include the IDs of the students. Please eliminate all hyphens in the IDs
and concatenate the IDs using under-scores: e.g., reliable 11111111 22222222.tar.gz

• Submit the file to the following link:
https://script.google.com/macros/s/AKfycbzw6vKkOxiPjpWlcxt5sD-j4XSyDigGTvQHRGGxEiv8FPaeByer/exec

8 Acknowledgements

This Project has been adapted from Stanford’s CS144 Introduction to Computer Networking Labs (http://www.scs.stanford.edu/11au-
cs144/lab/reliable/reliable.html).

9 F.A.Q.

Can we assume that the UDP packet length received is correct?
No. As stated above, you must examine the length field, and should not assume that UDP packet
you receive is the correct length. The network might truncate or pad packets.

How are rel output, conn output, and conn bufspace related?
• conn output: outputs data to STDOUT. Call this function with received data.

• conn bufspace: returns the space available for use with conn output. Calls to conn output

have limited space, as there is an underlying buffer. If you call conn output with more data
than it can handle, conn output may return that it has accepted fewer bytes. In order to avoid
passing in too much data, call conn bufspace to find out how much space is available.

5

https://polybox.ethz.ch/public.php?service=files&t=400a93f54a13402aa9609b941220ccc9
https://script.google.com/macros/s/AKfycbzw6vKkOxiPjpWlcxt5sD-j4XSyDigGTvQHRGGxEiv8FPaeByer/exec

• rel output: Once the data passed in to conn output is all sent, the library will call rel output

in order to continue processing any more data available.

Should Acks be piggybacked on top of outgoing data packets?
Piggybacking Acks is preferable but not required.

Assume packets 1-5 are received, and I output packets 1-3, but I do not have space to output
4 and 5 (even though I have them buffered). What should I do?
Only Ack packet 6 once you have space for packets 4 and 5. This helps to rate limit the sender.

Does the tester restart a new version of the ./reliable binary for each test?
No. We recycle a running instance of your program and put in new calls to rel create and
rel demux. So if you don’t handle tear down correctly, you can have one test affecting another test.

Do we retransmit each packet individually or always just retransmit all unacknowledged
packets?
Either is fine for correctness, but the preferred action is to retransmit just one packet (rather than
a whole window).

Do we have to handle multiple connections at the same time?
No, your code can work for only one sender and only one receiver, hence, connection demultiplexing
is unnecessary.

When running the test on my own machine I get an error that loading the shared library
libgmp failed.
We encourage you to use the Virtual Machine image we provide in order to save time from such
errors and because we will test your code on the same machine. To solve the problem you have to
create a symlink: sudo ln -s /usr/lib/x86 64-linux-gnu/libgmp.so.10 /usr/lib/libgmp.so.3. Please
ensure that in the end your code compiles on the Virtual Machine.

6

	Introduction
	Requirements
	Implementation Details
	Packet Types and Fields
	Implementations Details

	Task
	Testing
	Assessment
	Submission
	Acknowledgements
	F.A.Q.

