
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 9: I/O Subsystems
Never underestimate the KISS principle!

spcl.inf.ethz.ch

@spcl_eth

  Some answers:

  Apologies for forgetting yesterday’s book chapter!

Anderson/Dahlin: Chapter 13 (“Files and Directories”)

  What do I need to know for the exam?

Everything that’s mentioned on slides+exercises is essential

You should make sure you understand the concepts

This may require listening ☺

Everything else and the stories I tell are optional

  Why are your slides not self-contained?

Believe me, it’s better for you (cf. Rebecca Schumann “Digital Slideshows

are the scourge of education”)

Algorithm for resolving open questions

 (1) read book chapter, (2) ask friends, (3) ask TAs, (4) ask me

  I talked to the assistants to improve exercises

I hope that works --- they’re open for additional feedback!

 2

Thanks for the feedback! ☺

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

Question:
Huh?
Where is it
then?

Answer:

First sector of
volume points
to first block of
MFT

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

1.  Directories can never contain cycles

2.  Access control lists scale to large numbers of principals

3.  Capabilities are stored with the principals and revocation can be complex

4.  POSIX (Unix) access control is scalable to large numbers of files

5.  Named pipes are just (special) files in Unix

6.  Memory mapping improves sequential file access

7.  Accessing different files on disk can have different speeds

8.  The FAT filesystem enables fast random access

9.  FFS enables fast random access for small files

10. The minimum storage for a file in FFS is 8kB (4kB inode + block)

11. Block groups in FFS are used to simplify the implementation

12. Multiple hard links in FFS are stored in the same inode

13. NTFS stores files that are contiguous on disk more efficiently than FFS

14. The volume information in NTFS is a file in NTFS

9

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

In-memory data structures

spcl.inf.ethz.ch

@spcl_eth

Opening a file

  Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inode directory structure

User space Kernel Disk

spcl.inf.ethz.ch

@spcl_eth

Reading and writing

  Per-process open file table → index into…

  System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process
open file table

User space Kernel Disk

System
open file table

5

spcl.inf.ethz.ch

@spcl_eth

Efficiency and Performance

  Efficiency dependent on:

  disk allocation and directory algorithms

  types of data kept in file’s directory entry

  Performance

  disk cache – separate section of main memory for frequently used blocks

  free-behind and read-ahead – techniques to optimize sequential access

  improve PC performance by dedicating section of memory as virtual disk,
or RAM disk

spcl.inf.ethz.ch

@spcl_eth

Page Cache

  A page cache caches pages rather than disk blocks using virtual

memory techniques

  Memory-mapped I/O uses a page cache

  Routine I/O through the file system uses the buffer (disk) cache

  This leads to the following figure

spcl.inf.ethz.ch

@spcl_eth

Two layers of caching?

Memory-mapped files
File access with
read()/write()

Page cache

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Unified Buffer Cache

Memory-mapped files
File access with
read()/write()

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Filesystem Recovery

  Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

  Use system programs to back up data from disk to another

storage device (floppy disk, magnetic tape, other magnetic disk,

optical)

  Recover lost file or disk by restoring data from backup

spcl.inf.ethz.ch

@spcl_eth

Disks, Partitions and Logical Volumes

spcl.inf.ethz.ch

@spcl_eth

Partitions

  Multiplex single disk among >1 file systems

  Contiguous block ranges per FS

File system C
File system

B
File system A

P
a

rt
it
io

n

ta
b
le

Logical block address (LBA) on a single disk 0

spcl.inf.ethz.ch

@spcl_eth

Logical volumes

  Emulate 1 virtual disk from >1 physical ones

  Single file system spanning >1 disk

File system A
(part 1)

File system A
(part 2)

File system A
(part 3)

Disk 1 Disk 2 Disk 3

Single logical volume with file system A

spcl.inf.ethz.ch

@spcl_eth

Multiple file systems

  How to name files in multiple file systems?

  Top-level volume names:

  Windows A:, B:, C:, D:, etc. (problematic)

  \\fs-systems.ethz.ch\

  Bind “mount points” in name space

  Unix, etc. (flexible)

spcl.inf.ethz.ch

@spcl_eth

Mount points

spcl.inf.ethz.ch

@spcl_eth

File hierarchy with mounts

/

home etc dev var usr

htor netos shm run lock bin

Mount point

Normal directory

spcl.inf.ethz.ch

@spcl_eth

  Virtual File Systems (VFS) provide an object-oriented way of

implementing file systems.

  VFS allows the same system call interface (the API) to be used

for different types of file systems.

  The API is to the VFS interface, rather than any specific type of

file system.

Virtual File Systems

spcl.inf.ethz.ch

@spcl_eth

Virtual File System

File system interface

VFS interface

FAT file system
EXT4 file
system

NFS network
file system

Advanced: check out Linux’ FUSE (Filesystem in Userspace)

spcl.inf.ethz.ch

@spcl_eth

Rest of today: I/O

1.  Recap: what devices look like

2.  Device drivers

3.  The I/O subsystem

spcl.inf.ethz.ch

@spcl_eth

Recap from CASP:

What does a device look like?

spcl.inf.ethz.ch

@spcl_eth

Recap: What is a device?

Specifically, to an OS programmer:

  Piece of hardware visible from software

  Occupies some location on a bus

  Set of registers

  Memory mapped or I/O space

  Source of interrupts

  May initiate Direct Memory Access transfers

spcl.inf.ethz.ch

@spcl_eth

Recap: Registers

  Details of registers given

in chip “datasheets” or

“data books”

  Information is rarely

trusted by OS

programmers ☺

From the data
sheet for the

PC16550 UART
(standard PC

serial port)

spcl.inf.ethz.ch

@spcl_eth

Registers

  Slightly more readable

version:

  From Barrelfish, in a
language called “Mackerel”

  Compiler generates code to
do the “bit-banging”

spcl.inf.ethz.ch

@spcl_eth

Using registers

  From the Barrelfish console

driver

  Very simple!

  Note the issues:

  Polling loop on send

  Polling loop on receive

Only a good idea for debug

  CPU must write all the data

not much in this case

spcl.inf.ethz.ch

@spcl_eth

Very simple UART driver

  Actually, far too simple!

  But this is how the first version always looks…

  No initialization code, no error handling.

  Uses Programmed I/O (PIO)

  CPU explicitly reads and writes all values to and from registers

  All data must pass through CPU registers

  Uses polling

  CPU polls device register waiting before send/receive

Tight loop!

  Can’t do anything else in the meantime

Although could be extended with threads and care…

  Without CPU polling, no I/O can occur

spcl.inf.ethz.ch

@spcl_eth

Recap: Interrupts

  CPU Interrupt-request line triggered by I/O device

  Interrupt handler receives interrupts

  Maskable to ignore or delay some interrupts

  Interrupt vector to dispatch interrupt to correct handler

  Based on priority

  Some nonmaskable

  Interrupt mechanism also used for exceptions

spcl.inf.ethz.ch

@spcl_eth

Interrupt-Driven I/O Cycle

Process A performs
blocking I/O operation

Scheduler blocks process
A; switches to other

processes

Interrupt handler
processes data

CPU resumes interrupted
process

Driver initiates I/O
operation with device

Process A unblocks and
operation returns

…

…

Device starts I/O

I/O completes (or
error occurs); device

raises interrupt

…

CPU Device

spcl.inf.ethz.ch

@spcl_eth

Recap: Direct Memory Access

  Avoid programmed I/O for lots of data

  E.g. fast network or disk interfaces

  Requires DMA controller

  Generally built-in these days

  Bypasses CPU to transfer data directly between I/O device and

memory

  Doesn’t take up CPU time

  Can save memory bandwidth

  Only one interrupt per transfer

spcl.inf.ethz.ch

@spcl_eth

I/O Protection

I/O operations can be dangerous to normal system operation!

  Dedicated I/O instructions usually privileged

  I/O performed via system calls

  Register locations must be protected

  DMA transfers must be carefully checked

  Bypass memory protection!

  How can that happen today?

Multiple operating systems on the same machine (e.g., virtualized)

  IOMMUs are beginning to appear…

spcl.inf.ethz.ch

@spcl_eth

IOMMU does the same for the I/O devices as MMU does for the CPU!

➔  Translates device adresses (so called DVAs) into physical ones
➔  Uses so called IOTLB (I/O TLB)
➔  Works for DMA-capable

devices :-)

➔  Examples:
➔  Intel VT-d
➔  AMD IOMMU

➔  ...very similar in functionality

Source: Wikipedia

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

➔  Security features for VMs

➔  Possibility to assign different devices to different address domains

➔  By address remapping we can isolate the domains from one another,
thus 'sandboxing' untrusted devices

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

➔  IOMMUs were designed for enhancing virtualization

➔  Remapping & security features can be applied to guest virtual
machines

➔  Better performance than software-based I/O virtualization

Source: Intel VT-d specification

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Source: Intel VT-d specification

➔  IOMMUs take as the 'input request' the ID consisting of:

➔  Bus ID, stored in root tables (support for multiple buses),

➔  Device ID, stored in context tables (support for multiple devices within each bus)

➔  Function ID, also stored in context tables (support for multiple func. within each

device)

➔  Different page

table per I/O device

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Source: http://codingrelic.geekhold.com/

➔  IOMMUs support page remapping

➔  Some PCI devices use 32 bit addressing

➔  IOMMU Page Tables

➔  Similar to 'standard' multi-level
page tables

➔  Write-only / read-only bits
➔  Support for huge pages
➔  Currently no support for

more extended features
(e.g., reference bits)

bounce
buffers IOMMU

IOMMUs - Address remapping

spcl.inf.ethz.ch

@spcl_eth

➔  IOMMUs are much broader topic

➔  They provide also:

➔  Interrupt remapping (you can control interrupts in a similar
way as memory accesses)

➔  Device I/O TLBs (Intel VT-d)
➔  Fault logging
➔  …

➔  You can think of many interesting use cases for them :-)

➔  Interested? New ideas?

IOMMUs

spcl.inf.ethz.ch

@spcl_eth

Device drivers

spcl.inf.ethz.ch

@spcl_eth

Device drivers

  Software object (module, object, process, hunk of code) which

abstracts a device

  Sits between hardware and rest of OS

  Understands device registers, DMA, interrupts

  Presents uniform interface to rest of OS

  Device abstractions (“driver models”) vary…

  Unix starts with “block” and “character” devices

spcl.inf.ethz.ch

@spcl_eth

Device driver structure: the basic problem

  Hardware is interrupt driven.

  System must respond to unpredictable I/O events
(or events it is expecting, but doesn’t know when)

  Applications are (often) blocking

  Process is waiting for a specific I/O event to occur

  Often considerable processing in between

  TCP/IP processing, retries, etc.

  File system processing, blocks, locking, etc.

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

•  Can’t take too long
•  Interrupts disabled?

•  Can’t change much
•  Interrupt context
•  Arbitrary system state
•  Can’t hold locks

spcl.inf.ethz.ch

@spcl_eth

Example: network receive

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Demux
TCP processing
Retransmissions

Timeouts
Port allocation

Etc.

• Process is blocked
• Don’t even know it’s this

process until demux

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

1. Interrupt handler
i.  Masks interrupt
ii.  Does minimal processing
iii.  Unblocks driver thread

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

2. Thread
i.  Performs all necessary

packet processing
ii. Unblocks user processes
iii. Unmasks interrupt

spcl.inf.ethz.ch

@spcl_eth

Solution 1: driver threads

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt Interrupt handler

Driver thread

3. User process
i.  Per-process handling
ii. Copies packet to user space
iii. Returns from kernel

spcl.inf.ethz.ch

@spcl_eth

Terminology – very confused!

  1st-level Interrupt Handler (FLIH)

  Linux calls this the “top half”.

  In contrast to every other OS on the planet.

  Thread is an “interrupt handler thread” in Solaris

  Other names in other systems…

spcl.inf.ethz.ch

@spcl_eth

Solution 2: deferred procedure calls (DPCs)

User process

Kernel
Block Unblock

Recv()

Packet arrives;
Interrupt

Enqueue
DPC

(closure)

Run all
pending
DPCs

FLIH FLIH

spcl.inf.ethz.ch

@spcl_eth

Deferred Procedure Calls

  Instead of using a thread, execute on the next process to be

dispatched

  Before it leaves the kernel

  Solution in most versions of Unix

  Don’t need kernel threads

  Saves a context switch

  Can’t account processing time to the right process

  ∃ 3rd solution: demux early, run in user space

  Covered in Advanced OS Course!

spcl.inf.ethz.ch

@spcl_eth

More confusing terminology

  DPCs: also known as:

  2nd-level interrupt handlers

  Soft interrupt handlers

  Slow interrupt handlers

  In Linux ONLY: bottom-half handlers

  Any non-Linux OS (the way to think about it):

  Bottom-half = FLIH + SLIH, called from “below”

  Top-half = Called from user space (syscalls etc.), “above”

spcl.inf.ethz.ch

@spcl_eth

Life Cycle of An I/O Request

•  Send request to driver
•  Block process if needed

•  Request I/O

•  Issue commands to
device

•  Block until interrupted

•  Issue interrupt when I/O
completed

Time

•  I/O complete

•  Transfer data to/from user
space,

•  Return completion code

•  Demultiplex I/O complete
•  Determine source of

request

•  Handle interrupt
•  Signal device driver

•  I/O complete
•  Generate Interrupt

Can satisfy
request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system call System call

Yes

No

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

spcl.inf.ethz.ch

@spcl_eth

Generic I/O functionality

  Device drivers essentially move data to and from I/O devices

  Abstract hardware

  Manage asynchrony

  OS I/O subsystem includes generic functions for dealing with

this data

  Such as…

spcl.inf.ethz.ch

@spcl_eth

The I/O Subsystem

  Caching - fast memory holding copy of data

  Always just a copy

  Key to performance

  Spooling - hold output for a device

  If device can serve only one request at a time

  E.g., printing

spcl.inf.ethz.ch

@spcl_eth

The I/O Subsystem

  Scheduling

  Some I/O request ordering via per-device queue

  Some OSs try fairness

  Buffering - store data in memory while transferring between

devices or memory

  To cope with device speed mismatch

  To cope with device transfer size mismatch

  To maintain “copy semantics”

spcl.inf.ethz.ch

@spcl_eth

Naming and Discovery

  What are the devices the OS needs to manage?

  Discovery (bus enumeration)

  Hotplug / unplug events

  Resource allocation (e.g. PCI BAR programming)

  How to match driver code to devices?

  Driver instance ≠ driver module

  One driver typically manages many models of device

  How to name devices inside the kernel?

  How to name devices outside the kernel?

spcl.inf.ethz.ch

@spcl_eth

Matching drivers to devices

  Devices have unique (model) identifiers

  E.g. PCI vendor/device identifiers

  Drivers recognize particular identifiers

  Typically a list…

  Kernel offers a device to each driver in turn

  Driver can “claim” a device it can handle

  Creates driver instance for it.

spcl.inf.ethz.ch

@spcl_eth

Naming devices in the Unix kernel

(Actually, naming device driver instances)

  Kernel creates identifiers for

  Block devices

  Character devices

  [Network devices – see later…]

  Major device number:

  Class of device (e.g. disk, CD-ROM, keyboard)

  Minor device number:

  Specific device within a class

spcl.inf.ethz.ch

@spcl_eth

Unix Block Devices

  Used for “structured I/O”

  Deal in large “blocks” of data at a time

  Often look like files (seekable, mappable)

  Often use Unix’ shared buffer cache

  Mountable:

  File systems implemented above block devices

spcl.inf.ethz.ch

@spcl_eth

Character Devices

  Used for “unstructured I/O”

  Byte-stream interface – no block boundaries

  Single character or short strings get/put

  Buffering implemented by libraries

  Examples:

  Keyboards, serial lines, mice

  Distinction with block devices somewhat arbitrary…

spcl.inf.ethz.ch

@spcl_eth

Naming devices outside the kernel

  Device files: special type of file

  Inode encodes <type, major num, minor num>

  Created with mknod() system call

  Devices are traditionally put in /dev

  /dev/sda – First SCSI/SATA/SAS disk

  /dev/sda5 – Fifth partition on the above

  /dev/cdrom0 – First DVD-ROM drive

  /dev/ttyS1 – Second UART

spcl.inf.ethz.ch

@spcl_eth

Pseudo-devices in Unix

  Devices with no hardware!

  Still have major/minor device numbers. Examples:

/dev/stdin

/dev/kmem

/dev/random

/dev/null

/dev/loop0

etc.

spcl.inf.ethz.ch

@spcl_eth

Old-style Unix device configuration

  All drivers compiled into the kernel

  Each driver probes for any supported devices

  System administrator populates /dev

  Manually types mknod when a new device is purchased!

  Pseudo devices similarly hard-wired in kernel

spcl.inf.ethz.ch

@spcl_eth

Linux device configuration today

  Physical hardware configuration readable from /sys

  Special fake file system: sysfs

  Plug events delivered by a special socket

  Drivers dynamically loaded as kernel modules

  Initial list given at boot time

  User-space daemon can load more if required

  /dev populated dynamically by udev

  User-space daemon which polls /sys

spcl.inf.ethz.ch

@spcl_eth

Next time:

  Network stack implementation

  Network devices and network I/O

  Buffering

  Memory management in the I/O subsystem

