
2015‐03‐18

1

spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00) ‏

Chapter 8: Filesystem Implementation

source: xkcd.com

spcl.inf.ethz.ch

@spcl_eth

Access Control

spcl.inf.ethz.ch

@spcl_eth

Protection

  File owner/creator should be able to control:

  what can be done

  by whom

  Types of access

  Read

  Write

  Execute

  Append

  Delete

  List

spcl.inf.ethz.ch

@spcl_eth

Access control matrix

A B C D E F G H J …

Read     

Write    

Append  

Execute    

Delete 

List  

…

Principals

R
ig

h
ts

For a single file or directory:

Problem: how to scalably represent this matrix?

spcl.inf.ethz.ch

@spcl_eth

Row-wise: ACLs

  Access Control Lists

  For each right, list the principals

  Store with the file

  Good:

  Easy to change rights quickly

  Scales to large numbers of files

  Bad:

  Doesn’t scale to large numbers of principals

spcl.inf.ethz.ch

@spcl_eth

Column-wise: Capabilities

  Each principal with a right on a file holds a capability for that

right

  Stored with principal, not object (file)

  Cannot be forged or (sometimes) copied

  Good:

  Very flexible, highly scalable in principals

  Access control resources charged to principal

  Bad:

  Revocation: hard to change access rights
(need to keep track of who has what capabilities)

2015‐03‐18

2

spcl.inf.ethz.ch

@spcl_eth

POSIX (Unix) Access Control

  Simplifies ACLs: each file identifies 3 principals:

  Owner (a single user)

  Group (a collection of users, defined elsewhere)

  The World (everyone)

  For each principal, file defines 3 rights:

  Read (or traverse, if a directory)

  Write (or create a file, if a directory)

  Execute (or list, if a directory)

spcl.inf.ethz.ch

@spcl_eth

Example

spcl.inf.ethz.ch

@spcl_eth

Full ACLs

  POSIX now supports full ACLs

  Rarely used, interestingly

  setfacl, getfacl, …

  Windows has very powerful ACL support

  Arbitrary groups as principals

  Modification rights

  Delegation rights

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

  A file name identifies a string of data on a storage device

  The file size is part of the file’s metadata

  Names provide a means of abstraction through indirection

  Names are always assigned at object creation time

  A context is implicit to a name

  A context is implicit to an object

  Name resolve may be specific to a context

  Each file has exactly one name

  The call “unlink file” always removes the contents of “file”

  A fully qualified domain name is resolved recursively starting from the left

  A full (absolute) path identifies a unique file (piece of data)

  A full (absolute) path identifies a unique name

  Stable bindings can be changed with bind()

  Each name identifies exactly one object in a single context

10

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

File types

spcl.inf.ethz.ch

@spcl_eth

Is a directory a file?

  Yes…

  Allocated just like a file on disk

  Has entries in other directories like a file

  …and No…

  Users can’t be allowed to read/write to it

Corrupt file system data structures

Bypass security mechanisms

  File system provides special interface

opendir, closedir, readdir, seekdir, telldir, etc.

2015‐03‐18

3

spcl.inf.ethz.ch

@spcl_eth

Directory Implementation

  Linear list of (file name, block pointer) pairs

  Simple to program

  Lookup is slow for lots of files (linear scan)

  Hash Table – linear list with closed hashing.

  Fast name lookup

  Collisions

  Fixed size

  B-Tree – name index, leaves are block pointers

  Increasingly common

  Complex to maintain, but scales well

spcl.inf.ethz.ch

@spcl_eth

File types

  Other file types treated “specially” by the OS

  Simple, common cases:

  Executable files

  Directories, symbolic links, other file system data

  Some distinguish between text and binary

  Some have many types

  “Document” or “media” types

  Used to select default applications, editors, etc.

spcl.inf.ethz.ch

@spcl_eth

spcl.inf.ethz.ch

@spcl_eth

Unix devices and other file types

  Unix also uses the file namespace for
  Naming I/O devices (/dev)

  Named pipes (FIFOs)

  Unix domain sockets

  More recently:

  Process control (/proc)

  OS configuration and status (/proc, /sys)

  Plan 9 from Bell Labs

  Evolution of Unix: almost everything is a file

spcl.inf.ethz.ch

@spcl_eth

Executable files

  Most OSes recognize binary executables

  Sometimes with a “magic number”

  Will load, dynamically link, and execute in a process

  Other files are sometimes recognized

  E.g. “#!” script files in Unix
“#!/usr/bin/python”

spcl.inf.ethz.ch

@spcl_eth

File system operations

File operations:

  Create and variants

  Unix: mknod, mkfifo, ln –s, …

  Change access control

  Unix: chmod, chgrp, chown, setfacl, …

  Read metadata

  Unix: stat, fstat, …

  Open

  Operation: file → open file handle

2015‐03‐18

4

spcl.inf.ethz.ch

@spcl_eth

“Files” vs. “Open Files”

  Typical operations on files:

  Rename, stat, create, delete, etc.

  Open

  Open creates an “open file handle”

  Different class of object

  Allows reading and writing of file data

spcl.inf.ethz.ch

@spcl_eth

Open File Interface

spcl.inf.ethz.ch

@spcl_eth

Kinds of files

1.  Byte sequence

  The one you’re probably familiar with

2.  Record sequence

  Fixed (at creation time) records

  Mainframes or minicomputer OSes of the 70s/80s

3.  Key-based, tree structured

  E.g. IBM Indexed Sequential Access Method (ISAM)

  Mainframe feature, now superseded by databases

  In other words, moved into libraries

spcl.inf.ethz.ch

@spcl_eth

Byte-sequence files

  File is a vector of bytes

  Can be appended to

  Can be truncated

  Can be updated in place

  Typically no “insert”

  Accessed as:

  Sequential files (rare these days)

  Random access

spcl.inf.ethz.ch

@spcl_eth

Random access

  Support read, write, seek, and tell

  State: current position in file

  Seek absolute or relative to current position.

  Tell returns current index

  Index units:

  For byte sequence files, offset in bytes

spcl.inf.ethz.ch

@spcl_eth

Record-sequence files

  File is now a vector of fixed-size records

  Can be appended to

  Can be truncated

  Can be updated in place

  Typically no “insert”

  Record size (and perhaps format) fixed at creation time

  Read/write/seek operations take records and record offsets instead of byte
addresses

Compare with
databases!

2015‐03‐18

5

spcl.inf.ethz.ch

@spcl_eth

Memory-mapped files

  Basic idea: use VM system to cache files

  Map file content into virtual address space

  Set the backing store of region to file

  Can now access the file using load/store

  When memory is paged out

  Updates go back to file instead of swap space

spcl.inf.ethz.ch

@spcl_eth

On-disk data structures

spcl.inf.ethz.ch

@spcl_eth

Disk addressing

  Disks have tracks, sectors, spindles, etc.

  And bad sector maps!

  More convenient to use logical block addresses

  Treat disk as compact linear array of usable blocks

  Block size typically 512 bytes

  Ignore geometry except for performance (later!)

  Also abstracts other block storage devices

  Flash drives (load-levelling, etc.)

  Storage-area Networks (SANs)

  Virtual disks (RAM, RAID, etc.)

spcl.inf.ethz.ch

@spcl_eth

Implementation aspects

  Directories and indexes

  Where on the disk is the data for each file?

  Index granularity

  What is the unit of allocation for files?

  Free space maps

  How to allocate more sectors on the disk?

  Locality optimizations

  How to make it go fast in the common case

spcl.inf.ethz.ch

@spcl_eth

File system implementations

FAT FFS NTFS ZFS

Index structure Linked list Fixed,
asymmetric
tree

Dynamic tree Dynamic COW
tree

Index

granularity

Block Block Extent Block

Free space

management

FAT Array Fixed bitmap Bitmap in file Log-structured
space map

Locality

heuristics

Defragmentation Block groups,
Reserve
space

Best fit,
Defragmentation

Write
anywhere,
Block groups

See book
for details

spcl.inf.ethz.ch

@spcl_eth

FAT-32

2015‐03‐18

6

spcl.inf.ethz.ch

@spcl_eth

FAT background

  Very old – dates back to 1970s!

  No access control

  Very little metadata

  Limited volume size

  No support for hard links

  BUT still extensively used !
  Flash devices, cameras, phones

  Legend: During the development of Windows 3.0, it was
customary to have regular meetings with Bill Gates to brief him
on the status of the project. At one of the reviews, the topic was
performance, and Bill complained, "You guys are spending all
this time with your segment tuning tinkering. I could teach a
twelve-year-old to segment-tune. I want to see some real
optimization, not this segment tuning nonsense. I wrote FAT on
an airplane, for heaven's sake."

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Foo .exe 9

Bar .doc 12

Directory

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Free space:
Linear search
through FAT

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Slow random
access: need to

traverse linked list
for file block

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2
file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Very little support for
reliability: lose the FAT

and it’s game over

spcl.inf.ethz.ch

@spcl_eth

FAT file system

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

17
16

18
19

file 9 block 3

file 9 block 0
file 9 block 1
file 9 block 2

file 12 block 0

file 12 block 1

file 9 block 4

FAT Data blocks

Poor locality: files
can end up

fragmented on
disk

2015‐03‐18

7

spcl.inf.ethz.ch

@spcl_eth

FFS

spcl.inf.ethz.ch

@spcl_eth

Unix Fast File System (FFS)

  First appeared in BSD in the mid 1980’s

  Based on original Unix FS, with performance optimizations

  Basis for Linux ext{2,3} file systems

  Recommended watching:

  Marshall Kirk McKusick “A Brief History of the BSD Fast Filesystem”

Keynote at USENIX FAST’15

(https://www.youtube.com/watch?v=TMjgShRuYbg)

spcl.inf.ethz.ch

@spcl_eth

Inode
array

Metadata
Data block

Data block

Data block

Data block

FFS uses indexed allocation

Inode

Block
pointers

File inode number
from directory

entry

File is represented by an index block or inode

•  File metadata
•  List of blocks for each part of file
•  Directory contains pointers to inodes

spcl.inf.ethz.ch

@spcl_eth

Inode and file size in FFS

  Example:

  Inode is 1 block = 4,096 bytes

  Block addresses = 8 bytes

  Inode metadata = 512 bytes

  Hence:

  (4,096-512) / 8 = 448 block pointers

  448 * 4,096 = 1,792 kB max. file size

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Data block

…

Inode: (all blocks 4kB)

2015‐03‐18

8

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Data block

Data block

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Data block

Data block

Data block
…

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Data block

Data block

Data block

Data block

…

…

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Data block

Data block

Data block

Data block

…

…

Inode: (all blocks 4kB)

Question:
How to extend file size if
there are no more block
pointers in the Inode?

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

…

…

…

Inode: (all blocks 4kB)

4k / 8 = 512
block pointers

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Double indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect
block

indirect
block

indirect
block

Inode: (all blocks 4kB)

2015‐03‐18

9

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect
block

indirect
block

indirect
block

Inode: (all blocks 4kB)

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect
block

indirect
block

indirect
block

Inode: (all blocks 4kB)

Very small files: fit
data straight into
Inode in place of

pointers

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect
block

indirect
block

indirect
block

Inode: (all blocks 4kB)

Very fast random access for
files which fit in a single INode

spcl.inf.ethz.ch

@spcl_eth

Unix file system inode format (simplified)

File mode

Owner/group

Timestamps

Size

<other metadata>

12 direct block
pointers

Single indirect

Double indirect

Triple indirect

Data block

Data block

Data block

indirect
block

Data block

Data block

Data block

Data block

Data block

Data block

Data block

…

…

…

…

…

…

indirect
block

indirect
block

indirect
block

Inode: (all blocks 4kB)

Very large files: tree keeps
random access efficient

spcl.inf.ethz.ch

@spcl_eth

Free space map

  FFS uses a simple bitmap

  Initialized when the file system is created

  One bit per disk (file system) block

  Allocation is reasonably fast

  Scan though lots of bits at a time

  Bitmap can be cached in memory

spcl.inf.ethz.ch

@spcl_eth

Block groups

1. Optimize disk
performance by keeping
together related:

•  Files
•  Metadata (inodes)
•  Free space map
•  Directories

2015‐03‐18

10

spcl.inf.ethz.ch

@spcl_eth

Block groups

2. Use first-fit allocation
within a block group to
improve disk locality

spcl.inf.ethz.ch

@spcl_eth

Block groups

3. Layout and block
groups defined in the
superblock (not shown);
Replicated several times.

spcl.inf.ethz.ch

@spcl_eth

NTFS

spcl.inf.ethz.ch

@spcl_eth

NTFS Master file table

MFT

Std. info Attributes, data, metadata free

MFT record:

Lots of options for
what goes in here

1 kB fixed size

spcl.inf.ethz.ch

@spcl_eth

NTFS small files

  Small file fits into MFT record:

Std. info File data free Filename

“resident” data

spcl.inf.ethz.ch

@spcl_eth

NTFS small files

  Small file fits into MFT record:

  Hard links (multiple names) stored in MFT:

Std. info File data free Filename

Std. info File data free Filename1 Filename2

“resident” data

2015‐03‐18

11

spcl.inf.ethz.ch

@spcl_eth

NTFS normal files

  MFT holds list of extents:

Std. info
Start,
length

free Filename
Start,
length

Start,
length

Data (extent 0)

Data (extent 1)

Data (extent 2)

spcl.inf.ethz.ch

@spcl_eth

Too many attributes?

  Attribute list holds list of attribute locations

Std. info Attr. list Filename 2 Filename 1

n
a

m
e

n

a
m

e

d
a

ta

Std. info
Start,
length

free
Start,
length

Start,
length

MFT entry

2nd MFT entry

In addition, attributes can also be stored in
extents ⇒ very large scaling (see book)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

2015‐03‐18

12

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

spcl.inf.ethz.ch

@spcl_eth

Metadata files

  File system metadata in NTFS is held in files!

File num. Name Description

0 $MFT Master file table

1 $MFTirr Copy of first 4 MFT entries

2 $Logfile Transaction log of FS changes

3 $Volume Volume information & metadata

4 $AttrDef Table mapping numeric IDs to attributes

5 . Root directory

6 $Bitmap Free space bitmap

7 $Boot Volume boot record

8 $BadClus Bad cluster map

9 $Secure Access control list database

10 $UpCase Filename mappings to DOS

11 $Extend Extra file system attributes (e.g. quota)

Question:
Huh?
Where is it
then?

Answer:

First sector of
volume points
to first block of
MFT

spcl.inf.ethz.ch

@spcl_eth

In-memory data structures

spcl.inf.ethz.ch

@spcl_eth

Opening a file

  Directories translated into kernel data structures on demand:

open(“foo”);
directory

file inode directory structure

User space Kernel Disk

spcl.inf.ethz.ch

@spcl_eth

Reading and writing

  Per-process open file table → index into…

  System open file table → cache of inodes

read(5,…)

File blocks

file inode

Per-process
open file table

User space Kernel Disk

System
open file table

5

spcl.inf.ethz.ch

@spcl_eth

Efficiency and Performance

  Efficiency dependent on:

  disk allocation and directory algorithms

  types of data kept in file’s directory entry

  Performance

  disk cache – separate section of main memory for frequently used blocks

  free-behind and read-ahead – techniques to optimize sequential access

  improve PC performance by dedicating section of memory as virtual disk,
or RAM disk

2015‐03‐18

13

spcl.inf.ethz.ch

@spcl_eth

Page Cache

  A page cache caches pages rather than disk blocks using virtual

memory techniques

  Memory-mapped I/O uses a page cache

  Routine I/O through the file system uses the buffer (disk) cache

  This leads to the following figure

spcl.inf.ethz.ch

@spcl_eth

2 layers of caching?

Memory-mapped files
File access with
read()/write()

Page cache

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Unified Buffer Cache

Memory-mapped files
File access with
read()/write()

Buffer cache

File system

spcl.inf.ethz.ch

@spcl_eth

Recovery

  Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies

  Use system programs to back up data from disk to another

storage device (floppy disk, magnetic tape, other magnetic disk,

optical)

  Recover lost file or disk by restoring data from backup

