
2015‐03‐12

1

spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 7: Filesystem Abstractions

spcl.inf.ethz.ch

@spcl_eth

Paging OS back in …

  Base + limit registers

  Segmentation

  Paging

  Page protection

  Page sharing

  Page table structures

  TLB shootdown

  Uses for virtual memory

  Copy-on-write

  Demand paging

  Page fault handling

  Page replacement algorithms

  …

spcl.inf.ethz.ch

@spcl_eth

Frame allocation policies

spcl.inf.ethz.ch

@spcl_eth

Thrashing

  If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

  low CPU utilization

  operating system thinks that it needs to

increase the degree of multiprogramming

  another process added to the system

  Thrashing ≡ a process is busy
swapping pages in and out

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

Allocation of frames

  Each process needs minimum number of pages

  Example: IBM 370 – 6 pages to handle SS MOVE instruction:

  instruction is 6 bytes, might span 2 pages

  2 pages to handle from

  2 pages to handle to

  Two major allocation schemes

  fixed allocation

  priority allocation

spcl.inf.ethz.ch

@spcl_eth

  Equal allocation

  all processes get equal share

  Proportional allocation

  allocate according to the size of process

Fixed allocation

m
S

s
pa

m

sS

ps

i
ii

i

ii

×==

=

=

=

∑

for allocation

frames ofnumber total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

1

≈×=

≈×=

=

=

=

a

a

s

s

m

2015‐03‐12

2

spcl.inf.ethz.ch

@spcl_eth

Global vs. local allocation

  Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another

  Local replacement – each process selects from
only its own set of allocated frames

spcl.inf.ethz.ch

@spcl_eth

Priority allocation

  Proportional allocation scheme

  Using priorities rather than size

  If process Pi generates a page fault, replace:

1.  one of its frames, or

2.  frame from a process with lower priority

spcl.inf.ethz.ch

@spcl_eth

Thrashing

  If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

  low CPU utilization

  operating system thinks that it needs to increase the degree of

multiprogramming

  another process added to the system

  Thrashing ≡ a process is busy swapping pages in and
out

spcl.inf.ethz.ch

@spcl_eth

Thrashing

U
s
e
fu

l
C

P
U

 u
ti
liz

a
ti
o
n

Demand for virtual memory (e.g., more procs)

Thrashing
begins!

spcl.inf.ethz.ch

@spcl_eth

Demand paging and thrashing

  Why does demand paging work?
Locality model

  Process migrates from one locality to another

  Localities may overlap

  Why does thrashing occur?
Σ size of localities > total memory size

spcl.inf.ethz.ch

@spcl_eth

Locality in a memory reference pattern

2015‐03‐12

3

spcl.inf.ethz.ch

@spcl_eth

Working-set model

  Δ ≡ working-set window
 ≡ a fixed number of page references

  Example: 10,000 instructions

  WSSi (working set of process Pi) = total number of different
pages referenced in the most recent Δ (varies in time)

  Δ too small ⇒ will not encompass entire locality

  Δ too large ⇒ will encompass several localities

  Δ = ∞ ⇒ will encompass entire program

spcl.inf.ethz.ch

@spcl_eth

Allocate demand frames

  D = Σ WSSi ≡ total demand frames

  Intuition: how much space is really needed

  D > m ⇒ Thrashing

  Policy: if D > m, suspend some processes

spcl.inf.ethz.ch

@spcl_eth

Working-set model

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

Δ

WS(t1) = {1,2,5,6,7}
t1

Δ

WS(t2) = {3,4}
t2

Page reference string:

spcl.inf.ethz.ch

@spcl_eth

Keeping track of the working set

  Approximate with interval timer + a reference bit

  Example: Δ = 10,000

  Timer interrupts after every 5000 time units

  Keep in memory 2 bits for each page

  Whenever a timer interrupts shift+copy and sets the
values of all reference bits to 0

  If one of the bits in memory = 1 ⇒ page in working set

  Why is this not completely accurate?

  Hint: Nyquist-Shannon!

spcl.inf.ethz.ch

@spcl_eth

Keeping track of the working set

  Approximate with interval timer + a reference bit

  Example: Δ = 10,000

  Timer interrupts after every 5000 time units

  Keep in memory 2 bits for each page

  Whenever a timer interrupts shift+copy and sets the
values of all reference bits to 0

  If one of the bits in memory = 1 ⇒ page in working set

  Why is this not completely accurate?

  Cannot tell (within 5000 units) where the reference occurred

  Improvement = 10 bits and interrupt every 1000 time units

spcl.inf.ethz.ch

@spcl_eth

Page-fault frequency scheme

  Establish “acceptable” page-fault rate

  If actual rate too low, process loses frame

  If actual rate too high, process gains frame

Number of
frames

R
a
te

 o
f
p
a
g
e
 f
a
u
lt
s

Lower bound

Upper bound

Increase
number of

frames

Decrease
number of

frames

2015‐03‐12

4

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

  Copy-on-write can be used to communicate between processes

  Copy-on-write leads to faster process creation (with fork)

  Copy-on-write saves memory

  Paging can be seen as a cache for memory on disk

  Paging supports an address space larger than main memory

  It’s always optimal to replace the least recently used (LRU) page

  The “second chance” (clock) algorithm approximates LRU

  Thrashing can bring the system to a complete halt

  Thrashing occurs only when a single process allocates too much memory

  The working set model allows to select processes to suspend

  Paging requires no memory management unit

  Page-faults are handled by the disk

  A priority allocation scheme for memory frames may suffer from priority
inversion

19

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Filesystem Abstractions

spcl.inf.ethz.ch

@spcl_eth

What is the filing system?

  Virtualizes the disk

  Between disk (blocks) and programmer abstractions (files)

  Combination of multiplexing and emulation

  Generally part of the core OS

  Other utilities come extra:

  Mostly administrative

  Book: OSPP Sections 11+13

spcl.inf.ethz.ch

@spcl_eth

What does the file system need to provide?

Goal Physical characteristic Design implication

High performance High cost of I/O access Organize placement: access

data in large, sequential

units

Use caching to reduce I/O

Named data Large capacity, persistent

across crashes, shared

between programs

Support files and directories

with meaningful names

Controlled sharing Device stores many users’

data

Include access control

metadata with files

Reliable storage Crashes occur during

update

Transactions to make set of

updates atomic

Storage devices fail Redundancy to detect and

correct failures

Flash memory wears out Wear-levelling to prolong life

spcl.inf.ethz.ch

@spcl_eth

What the file system builds on

Application

Library

File system

Block cache

Block device interface

Device driver

I/O, DMA, Interrupts

Physical device

File system API
and implementation

I/O system
(see later)

spcl.inf.ethz.ch

@spcl_eth

Filing System Interface

2015‐03‐12

5

spcl.inf.ethz.ch

@spcl_eth

What is a file, to the filing system?

  Some data

  A size (how many bytes or records)

  One or more names for the file

  Other metadata and attributes

  The type of the file

  Some structure (how the data is organized)

  Where on (disk) etc. the data is stored
  Next week’s topic

spcl.inf.ethz.ch

@spcl_eth

File metadata

  Metadata: important concept!

  Data about an object, not the object itself

  File metadata examples:

  Name

  Location on disk (next lecture)

  Times of creation, last change, last access

  Ownership, access control rights (perhaps)

  File type, file structure (later)

  Arbitrary descriptive data (used for searching)

spcl.inf.ethz.ch

@spcl_eth

Naming

spcl.inf.ethz.ch

@spcl_eth

Background

  Good place to introduce Naming in general

  Naming in computer systems is:

  Complex

  Fundamental

  Computer systems are composed of many, many layers of
different name systems.

  E.g., virtual memory, file systems, Internet, …

spcl.inf.ethz.ch

@spcl_eth

Basics: We need to name objects

Socket clientSocket = new Socket("hostname", 6789);

Create a new object

Give it a name

spcl.inf.ethz.ch

@spcl_eth

Naming provides indirection

 DataOutputStream outToServer = new
DataOutputStream(clientSocket.getOutputStream());

Could be any
socket we have

now

2015‐03‐12

6

spcl.inf.ethz.ch

@spcl_eth

Indirection

  Well-known quote by David Wheeler:

“All problems in computer science can be solved by another level

of indirection”

  Might be less elegantly paraphrased as:

“Any problem in computer science can be recast as a sufficiently

complex naming problem”

spcl.inf.ethz.ch

@spcl_eth

Binding

  The association between a name and a value is called a binding.

  In most cases, the binding isn’t immediately visible

  Most people miss it, or don’t know it exists

  Often conflated with creating the value itself

  Sometimes bindings are explicit, and are objects themselves.

spcl.inf.ethz.ch

@spcl_eth

A General Naming Model

spcl.inf.ethz.ch

@spcl_eth

A general model of naming

  Designer creates a naming scheme.

1.  Name space: what names are valid?

2.  Universe of values: what values are valid?

3.  Name mapping algorithm: what is the association of names to values?

  Mapping algorithm also known as a resolver

  Requires a context

spcl.inf.ethz.ch

@spcl_eth

General model

N1
N2

N3
N4

N5
N6

N7

Foo

Bar
Gronk

 Baz

Name
mapping

algorithm

Context A

spcl.inf.ethz.ch

@spcl_eth

Context

  “you”, “here”, “Ueli Maurer” are names that require a context to
be useful

  Any naming scheme must have ≥ 1 context

  Context may not be stated: always look for it!

2015‐03‐12

7

spcl.inf.ethz.ch

@spcl_eth

Example naming scheme: Virtual address space

  Name space:

  Virtual memory addresses (e.g., 64-bit numbers)

  Universe of values:

  Physical memory addresses (e.g., 64-bit numbers)

  Mapping algorithm:

  Translation via a page table

  Context:

  Page table root

spcl.inf.ethz.ch

@spcl_eth

  IPv4 addresses:

  E.g., 129.132.102.54

  Single (global) context: routable from anywhere

  Well, sort of…

  ATM virtual circuit/path identifiers

  E.g., 43:4435

  Local context: only valid on a particular link/port

  Many contexts!

Single vs. multiple contexts

spcl.inf.ethz.ch

@spcl_eth

Naming operations

spcl.inf.ethz.ch

@spcl_eth

Resolution

  Basic operation:

  value ← RESOLVE(name, context)

  In practice, resolution mechanism depends on context:

  value ← context.RESOLVE(name)

spcl.inf.ethz.ch

@spcl_eth

Resolution example

  Problem:
  How does A determine

B’s MAC address given

its IP address?

  Name space:
  IP addresses

  Universe of values:
  Ethernet MAC addresses

  Mapping algorithm:
  ARP: the Address

Resolution protocol

B’s IP addr: 10.10.5.23

Ethernet: 00:1e:c9:74:db:63

A’s IP addr: 10.10.9.41

Ethernet: 00:1f:3b:3a:73:55

spcl.inf.ethz.ch

@spcl_eth

Managing bindings

  Typical operations:

  status ← BIND(name, value, context)

  status ← UNBIND(name, context)

  May fail according to naming scheme rules

  Unbind may need a value

2015‐03‐12

8

spcl.inf.ethz.ch

@spcl_eth

Example

  Unix file system (more on this later):

$ ln target new_link

  Binds “new_link” to value obtained by resolving “target” in the
current context (working directory)

$ rm new_link

  Removes binding of “new_link” in cwd

  Actually called unlink at the system call level!

spcl.inf.ethz.ch

@spcl_eth

Enumeration

  Not always available:

  list ← ENUMERATE(context)

  Return all the bindings (or names) in a context

spcl.inf.ethz.ch

@spcl_eth

Example enumeration

$ ls

or

C:/> dir

spcl.inf.ethz.ch

@spcl_eth

Comparing names

–  result ← COMPARE(name1, name2)

•  But what does this mean?

–  Are the names themselves the same?

–  Are they bound to the same object?

–  Do they refer to identical copies of one thing?

•  All these are different!

•  Requires a definition of “equality” on objects

•  In general, impossible…

spcl.inf.ethz.ch

@spcl_eth

Examples

  Different names, same referent:

/home/htor/bio.txt

~/bio.txt

  Different names, same content:

htor.inf.ethz.ch://home/htor/hg/personal/websites/eth/bio.txt

free.inf.ethz.ch://home/htor/public_html/bio.txt

spcl.inf.ethz.ch

@spcl_eth

Naming policy alternatives

2015‐03‐12

9

spcl.inf.ethz.ch

@spcl_eth

How many values for a name? (in a single context)

  If 1, mapping is injective or “1-1”

  Car number plates

  Virtual memory addresses

  Otherwise: multiple values for a name

  Phone book (people have more than 1 number)

  DNS names (can return multiple ‘A’ records)

spcl.inf.ethz.ch

@spcl_eth

How many names for a value?

  Only one name for each value

  Names of models of car

  IP protocol identifiers

  Multiple names for the same value

  Phone book again (people sharing a home phone)

  URLs (multiple links to same page)

spcl.inf.ethz.ch

@spcl_eth

Unique identifier spaces and stable bindings

  At most one value bound to a name

  Once created, bindings can never be changed

  Useful: can always determine identity of two objects
  Social security numbers

  Ethernet MAC addresses

E8:92:A4:*:*:* → LG corporation

E8:92:A4:F2:0B:97 → Torsten’s phone’s WiFi interface

spcl.inf.ethz.ch

@spcl_eth

Types of lookup

spcl.inf.ethz.ch

@spcl_eth

Name mapping algorithms

1.  Table lookup
  Simplest scheme

  Analogy: phone book

2.  Recursive lookup (pathnames)

3.  Multiple lookup (search paths)

spcl.inf.ethz.ch

@spcl_eth

Table lookup: other examples

  Processor registers are named by small integers.

  Memory cells are named by numbers.

  Ethernet interfaces are named by MAC addresses

  Unix accounts are named by small (16bit) numbers (userids)

  Unix userids are named by short strings

  Unix sockets are named by small integers

2015‐03‐12

10

spcl.inf.ethz.ch

@spcl_eth

Default and explicit contexts,
qualified names

spcl.inf.ethz.ch

@spcl_eth

Where is the context?

1.  Default (implicit): supplied by the resolver

1.  Constant: built in to the resolver

2.  Variable: from current environment (state)

2.  Explicit: supplied by the object

1.  Per object

2.  Per name (qualified name)

spcl.inf.ethz.ch

@spcl_eth

Constant default context

  Universal name space:
e.g. DNS

  Short answer:

  context is the DNS root server

  Longer answer:

  /etc/hosts, plus DNS root server

  Even longer answer:

  /etc/nsswitch.conf, WINS resolver, domain search path, …

spcl.inf.ethz.ch

spcl.inf.ethz.ch

@spcl_eth

Variable default context

  Example: current working directory

$ pwd
/home/htor/svn
$ ls
osnet/
$ cd osnet
$ ls
archive/ lecture/ organisation/ svnadmin/
assignments/ legis/ recitation sessions/ svn-commit.tmp
$ ls lecture
chapter1/ chapter2/ chapter5/ chapter8/ template.pptx
chapter10/ chapter3/ chapter6/ chapter9/
chapter11/ chapter4/ chapter7/ dates.xls
$

spcl.inf.ethz.ch

@spcl_eth

Explicit per-object context

  Note: context reference is a name!

  Sometimes called a base name

  Examples:

$ ssh –l htor spcl.inf.ethz.ch

$ dig @8.8.8.8 -q a spcl.inf.ethz.ch

$ dig @google-public-dns-a.google.com -q a spcl

spcl.inf.ethz.ch

@spcl_eth

Explicit per-name context

  Each name comes with its context

  Actually, the name of the context

  (context,name) = qualified name

  Recursive resolution process:

  Resolve context to a context object

  Resolve name relative to resulting context

  Examples:

  htor@inf.ethz.ch

  /var/log/syslog

2015‐03‐12

11

spcl.inf.ethz.ch

@spcl_eth

Path names, naming networks, recursive
resolution

spcl.inf.ethz.ch

@spcl_eth

Path names

•  Recursive resolution ⇒ path names

•  Name can be written forwards or backwards

–  Examples: /var/log/messages or spcl.inf.ethz.ch

•  Recursion must terminate:

–  Either at a fixed, known context reference

•  (the root)

–  Or at another name, naming a default context

•  Example: relative pathnames

•  Syntax gives clue (leading ‘/’)

•  Or trailing “.” as in spcl.inf.ethz.ch.

spcl.inf.ethz.ch

@spcl_eth

Naming networks

.

..

/

usr

home

…

.

..

bin

lib

share

…

.

..

htor

alonso

schuepb

…

spcl.inf.ethz.ch

@spcl_eth

“Soft links”

  So far, names resolve to values

  Values may be names in a different naming scheme (usually are…)

  Names can resolve to other names in the same scheme:

  Unix symbolic links (ln –s), Windows “short cuts”

  Forwarding addresses (Die Post vs. USPS, WWW, Email)

spcl.inf.ethz.ch

@spcl_eth

Multiple lookup

spcl.inf.ethz.ch

@spcl_eth

Sometimes, one context is not enough…

  Multiple lookup, or “search path”

  try several contexts in order

  Union mounts: overlay two or more contexts

  Examples:

  binary directories in Unix

  resolving symbols in link libraries

  Somewhat controversial…

  Note: “search”, but not in the Google sense…

2015‐03‐12

12

spcl.inf.ethz.ch

@spcl_eth

$ echo $PATH
/home/htor/bin:/local/bin:/usr/local/bin:/usr/bin:
/bin:/sbin:/usr/sbin:/etc:/usr/bin/X11:/etc/local:
/usr/local/sbin:/home/netos/tools/bin:/usr/bin:
/home/netos/tools/i686-pc-linux-gnu/bin
$ which bash
/bin/bash
$

“Search path” example

spcl.inf.ethz.ch

@spcl_eth

Name Discovery

spcl.inf.ethz.ch

@spcl_eth

How to find a name in the first place?

  Many options:

  Well-known.

  Broadcast the name.

  Query (google/bing search)

  Broadcast the query.

  Resolve some other name to a name space

  Introduction

  Physical rendezvous

  Often reduces to another name lookup…

spcl.inf.ethz.ch

@spcl_eth

Bad names

“The Hideous Name”, Rob Pike and P.J. Weinberger, AT&T Bell
Labs

research!ucbvax!@cmu-cs-pt.arpa:@CMU-ITC-
LINUS:dave%CMU-ITC-LINUS@CMU-CS-PT

(Attributed to the Carnegie-Mellon mailer)

spcl.inf.ethz.ch

@spcl_eth

Warning

  Don’t look too closely at names

  Almost everything can be viewed as naming

  This does not mean it should be.

“All problems in computer science can be solved by another level of
indirection…”

“...except for the problem of too many layers of indirection.”

  A naming model is a good servant, but a poor master.

spcl.inf.ethz.ch

@spcl_eth

Conclusion

  Naming is everywhere in Computer Systems

  Name spaces

  Contexts

  Resolution mechanisms

  When understanding a system, ask:

  What are the naming schemes?

  What’s the context?

  What’s the policy?

  When designing a system, it will help stop you making (some)
silly mistakes!

2015‐03‐12

13

spcl.inf.ethz.ch

@spcl_eth

File system operations

We’ve already seen the file system as a naming scheme.

Directory (name space) operations:

  Link (bind a name)

  Unlink (unbind a name)

  Rename

  List entries

spcl.inf.ethz.ch

@spcl_eth

Acyclic-Graph Directories

  Two different names (aliasing)

  If dict deletes list ⇒ dangling pointer

 Solutions:

  Backpointers, so we can delete all pointers

Variable size records can be a problem

  Backpointers using a daisy chain organization

  Entry-hold-count solution

  New directory entry type

  Link – another name (pointer) to an existing file

  Resolve the link – follow pointer to locate the file

dict

list

verbs spell

words

spcl.inf.ethz.ch

@spcl_eth

General Graph Directory

  How do we guarantee no cycles?
Options:

  Allow only links to files and not directories

  Garbage collection (with cycle collector)

  Check for cycles when every new
link is added

  Restrict directory links to parents

E.g., “.” and “..”

All cycles are therefore trivial

dict

list

verbs spell

words

course

root

spcl.inf.ethz.ch

@spcl_eth

Access Control

spcl.inf.ethz.ch

@spcl_eth

Protection

  File owner/creator should be able to control:

  what can be done

  by whom

  Types of access

  Read

  Write

  Execute

  Append

  Delete

  List

spcl.inf.ethz.ch

@spcl_eth

Access control matrix

A B C D E F G H J …

Read

Write

Append

Execute

Delete

List

…

Principals

R
ig

h
ts

For a single file or directory:

Problem: how to scalably represent this matrix?

2015‐03‐12

14

spcl.inf.ethz.ch

@spcl_eth

Row-wise: ACLs

  Access Control Lists

  For each right, list the principals

  Store with the file

  Good:

  Easy to change rights quickly

  Scales to large numbers of files

  Bad:

  Doesn’t scale to large numbers of principals

spcl.inf.ethz.ch

@spcl_eth

Column-wise: Capabilities

  Each principal with a right on a file holds a capability for that
right

  Stored with principal, not object (file)

  Cannot be forged or (sometimes) copied

  Good:

  Very flexible, highly scalable in principals

  Access control resources charged to principal

  Bad:

  Revocation: hard to change access rights

(need to keep track of who has what capabilities)

spcl.inf.ethz.ch

@spcl_eth

POSIX (Unix) Access Control

  Simplifies ACLs: each file identifies 3 principals:

  Owner (a single user)

  Group (a collection of users, defined elsewhere)

  The World (everyone)

  For each principal, file defines 3 rights:

  Read (or traverse, if a directory)

  Write (or create a file, if a directory)

  Execute (or list, if a directory)

spcl.inf.ethz.ch

@spcl_eth

Example

spcl.inf.ethz.ch

@spcl_eth

Full ACLs

  POSIX now supports full ACLs

  Rarely used, interestingly

  setfacl, getfacl, …

  Windows has very powerful ACL support

  Arbitrary groups as principals

  Modification rights

  Delegation rights

spcl.inf.ethz.ch

@spcl_eth

Concurrency

2015‐03‐12

15

spcl.inf.ethz.ch

@spcl_eth

Concurrency

1.  Must ensure that, regardless of concurrent access, file system
integrity is ensured

  Careful design of file system structures

  Internal locking in the file system

  Ordering of writes to disk to provide transactions

2.  Provide mechanisms for users to avoid conflicts themselves

  Advisory locks

  Mandatory locks

spcl.inf.ethz.ch

@spcl_eth

Common locking facilities

  Type:

  Advisory: separate locking facility

  Mandatory: write/read operations will fail

  Granularity:

  Whole-file

  Byte ranges (or record ranges)

  Write-protecting executing binaries

spcl.inf.ethz.ch

@spcl_eth

Compare with databases

  Databases have a way better notions of:

  Locking between concurrent users

  Durability in the event of crashes

  Records and indexed files have largely disappeared in favor of
databases

  File systems remain much easier to use

  And much, much faster

  As long as it doesn’t matter…

