

If you miss a key ...

ETH zürich

... after yesterday's exercise session ...

... pick it up here!

2

TLB management

ETH zürich

- Recall: the TLB is a cache.
- Machines have many MMUs on many cores ⇒ many TLBs
- Problem: TLBs should be coherent. Why?
 - Security problem if mappings change
 - E.g., when memory is reused

- 1. Hardware TLB coherence
 - Integrate TLB mgmt with cache coherence
 - Invalidate TLB entry when PTE memory changes
 - Rarely implemented

2. Virtual caches

- Required cache flush / invalidate will take care of the TLB
- High context switch cost!
 - ⇒ Most processors use physical caches

5. Software TLB shootdown

- Most common
- OS on one core notifies all other cores Typically an IPI
- Each core provides local invalidation

6. Hardware shootdown instructions

- Broadcast special address access on the bus
- Interpreted as TLB shootdown rather than cache coherence message
- E.g., PowerPC architecture

Our Small Quiz

- True or false (raise hand)
 - 1. Base (relocation) and limit registers provide a full virtual address space
 - 2. Base and limit registers provide protection
 - 3. Segmentation provides a base and limit for each segment
 - 4. Segmentation provides a full virtual address space
 - 5. Segmentation allows libraries to share their code
 - 6. Segmentation provides linear addressing
 - 7. Segment tables are set up for each process in the CPU
 - 8. Segmenting prevents internal fragmentation
 - 9. Paging prevents internal fragmentation
 - 10. Protection information is stored at the physical frame
 - 11. Pages can be shared between processes
 - 12. The same page may be writeable in proc. A and write protected in proc. B
 - 13. The same physical address can be references through different addresses from (a) two different processes (b) the same process?
 - 14. Inverted page tables are faster to search than hierarchical (asymptotically)

11

ETH zürich

Today

- Uses for virtual memory
- Copy-on-write
- Demand paging
 - Page fault handling
 - Page replacement algorithms
 - Frame allocation policies
 - Thrashing and working set
- Book: OSPP Sections 9.5, 9.7 (all of 9 as refresh)

ETH zürich spcl.inf.ethz.ch ▼ @spcl_eth

Recap: Virtual Memory

- User logical memory ≠ physical memory.
 - Only part of the program must be in RAM for execution
 ⇒ Logical address space can be larger than physical address space
 - Address spaces can be shared by several processes
 - More efficient process creation
- Virtualize memory using software+hardware

ETH zürich spcl.inf.ethz.ch y @spcl_eth

The many uses of address translation

- Process isolation
- IPC
- Shared code segments
- Program initialization
- Efficient dynamic memory allocation •
- Cache management
- Program debugging
- Efficient I/O

- Memory mapped files
- Virtual memory
- Checkpoint and restart
- Persistent data structures
- Process migration
- Information flow control
- Distributed shared memory and many more ...

Recall fork () Can be expensive to create a complete copy of the process' address space Especially just to do exec()! Vfork(): shares address space, doesn't copy Fast Dangerous – two writers to same heap Better: only copy when you know something is going to get written

Copy-on-Write

ETH zürich

 COW allows both parent and child processes to initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

- COW allows more efficient process creation as only modified pages are copied
- Free pages are allocated from a pool of zeroed-out pages

Demand Paging

- Page needed ⇒ reference (load or store) to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory
- Lazy swapper never swaps a page into memory unless page will be needed
 - Swapper that deals with pages is a pager
 - Can do this with segments, but more complex
- Strict demand paging: only page in when referenced

Page Fault

If there is a reference to a page, first reference to that page will trap to operating system:

page fault

- 1. Operating system looks at another table to decide:
 - Invalid reference ⇒ abort
 - Just not in memory
- 2. Get empty frame
- 3. Swap page into frame
- 4. Reset tables
- 5. Set valid bit v
- 6. Restart the instruction that caused the page fault

ETH zürich

Memory access time = 200 nanoseconds

Demand paging example

- Average page-fault service time = 8 milliseconds
- = EAT = $(1 p) \times 200 + p (8 \text{ milliseconds})$ = $(1 - p) \times 200 + p \times 8,000,000$ = $200 + p \times 7,999,800$
- If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Page Replacement

What happens if there is no free frame?

- Page replacement find "little used" resident page to discard or write to disk
 - "victim page"
 - needs selection algorithm
 - performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Page replacement

- Try to pick a victim page which won't be referenced in the future
 - Various heuristics but ultimately it's a guess
- Use "modify" bit on PTE
 - Don't write "clean" (unmodified) page to disk
 - Try to pick "clean" pages over "dirty" ones (save a disk write)

ETH zürich

- Stack implementation keep a stack of page numbers in a double link form:
 - Page referenced: move it to the top requires 6 pointers to be changed
 - No search for replacement
- General term: stack algorithms
 - Have property that adding frames always reduces page faults (no Belady's Anomaly)

Allocation of frames

- Each process needs minimum number of pages
- Example: IBM 370 6 pages to handle SS MOVE instruction:
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle from
 - 2 pages to handle to
- Two major allocation schemes
 - fixed allocation

ETH zürich

priority allocation

ETH zürich

Fixed allocation

- Equal allocation
 - all processes get equal share
- Proportional allocation
 - allocate according to the size of process

$$s_i = \text{size of process } p_i$$
 $m = 64$
 $S = \sum s_i$ $s_1 = 10$
 $m = \text{total number of frames}$ $s_2 = 127$
 $a_i = \text{allocation for } p_i = \frac{s_i}{S} \times m$ $a_1 = \frac{10}{137} \times 64 \approx 5$
 $a_2 = \frac{127}{137} \times 64 \approx 59$

ETH zürich

spcl.inf.ethz.ch

Priority allocation

- Proportional allocation scheme
- Using priorities rather than size
- If process P_i generates a page fault, select:
 - 1. one of its frames, or
 - 2. frame from a process with lower priority

Global vs. local allocation

ETH zürich

- Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another
- Local replacement each process selects from only its own set of allocated frames

ETH zürich

spcl.inf.ethz.ch graph @spcl_eth

Allocate demand frames

- $D = \Sigma WSS_i = total demand frames$
 - Intuition: how much space is really needed
- D > m ⇒ Thrashing
- Policy: if D > m, suspend some processes

ETH zürich

spcl.inf.ethz.ch y @spcl_eth

Working-set model

Page reference string:

...2615777751623412344434344413234443444...

Keeping track of the working set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts shift+copy and sets the values of all reference bits to 0
 - If one of the bits in memory = 1 ⇒ page in working set
- Why is this not completely accurate?
 - Hint: Nyquist-Shannon!

Keeping track of the working set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts shift+copy and sets the values of all reference bits to 0
 - If one of the bits in memory = 1 ⇒ page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

