ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (zsz-ooez-ooi
Chapter 2: Processes

RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis

Genkin, Shamir, Tromer, Dec. 2013

“Here, we describe a new acoustic cryptanalysis
key extraction attack, applicable to GnuPG's
current implementation of RSA. The attack can
extract full 4096-bit RSA decryption keys from
laptop computers (of various models), within an

¥ SOMEONE. STEALS MY LAPTOP WHLE IM hour, using the sound generated by the computer

LDGGED W ﬁm&y mtmgf)sm “' during the decryption of some chosen ciphertexts.”

MRFWWWT!IS‘INL
DRIVERS WITHOUT MY PERMISSION.

© source: xkcd.com

hitp://tau.ac.il/~tromer/acoustic/

A spel.inf.ethz.ch
TN\ Vi

2015-02-19

Last time: introduction

. ion: ?
Introduction: Why?—, Loschsystem hiitte intaktes Triebwerk "geloscht”

L Fehler: Bei drei jaren L falsch
. Ro'es of the os verkabe. Im Falle eines Brandes wire nicht das in Flammen stehende,
sondem das noch intakte Triebwerk geloscht worden. vas Gesae Hegmam
* Referee
« lllusionist
* Glue

« Structure of an OS

A ‘spel.inf.ethz.ch
Y\ Voo

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

Entering and exiting the kernel

A spel.inf.ethz.ch
I\ Ve

When is the kernel entered?

= System Startup

= Exception (aka. trap): caused by user program
= Interrupt: caused by “something else”

= System calls

= Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)
Division by zero

Fork

Incoming network packet

Segmentation violation

Read

Keyboard input

Recall: System Calls

= RPC to the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

Process resumes

User process > ‘ Execute
runs syscall

User mode

\ Privileged mode
Execute kernel
code

Systemcalls &




2015-02-19

A spel.inf.ethz.ch
I\ Ve

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

= Passed in processor registers

= Stored in memory (address (pointer) in register)
= Pushed on the stack

= System library (libc) wraps as a C function
= Kernel code wraps handler as C call

S e
When is the kernel exited?

= Creating a new process
= Including startup

= Resuming a process after a trap
= Exception, interrupt or system call

= User-level upcall
= Much like an interrupt, but to user-level

= Switching to another process

A spel.inf.ethz.ch
I\ Ve

Processes

J\vy“b'\. P Gereron
Process concept
“The execution of a program with restricted rights”

= Virtual machine, of sorts

= On older systems:
= Single dedicated processor
= Single address space
= System calls for OS functions

= In software:
computer system = (kernel + processes)

A spel.inf.ethz.ch
I\ Ve

Process ingredients

= Virtual processor
= Address space
= Registers
= Instruction Pointer / Program Counter

= Program text (object code)
= Program data (static, heap, stack)
= OS “stuff”:

= Open files, sockets, CPU share,
= Security rights, etc.

A spel.inf.ethz.ch
Y\ Ve

Process address space

Should look
familiar ...

7FFFFFFF

Stack

(addresses are examples: some
machines used the top address
bit to indicate kernel mode)

BSS

Data

Text

00000000




A spel.inf.ethz.ch
VI, Y amon

2015-02-19

Process lifecycle

created
preemption

runnable
(ready)

/0
completes

operation

blocked

o terminated
(waiting)

A spel.inf.ethz.ch
I\ Ve

A spel.inf.ethz.ch
AN Yamion

Multiplexing

= OS time-division multipl pr
= Or space-division on multiprocessors

= Each process has a Process Control Block (PCB)
= In-kernel data structure
= Holds all virtual processor state
Identifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, efc.

Process control block

@

o

g 5

o« Stack £

3 @

5 £

° ©

; @ g (other

8 =~ kernel

<4 data

a structures)
BSS

Process

BELE) Control
Text Block

A spel.inf.ethz.ch
VI, Y amon

A ‘spel.inf.ethz.ch
Y\ Voo

Process switching
Process A Kernel Process B
[Process A executes]

Save state to PCB(A)

[Kernel executes]

Time

Restore from PCB(B)

[Process B executes]

Save state to PCB(B)

[Kernel executes]

Restore from PCB(A)

U[I’T(:ess Aexecutes]

Process Creation

A spel.inf.ethz.ch
AN Yamion

Process Creation

= Bootstrapping problem. Need:
= Code to run
= Memory to runiitin
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.




A spel.inf.ethz.ch
VI, Y amon

FI\,

2015-02-19

splintethzch
W @spol_eth

Process creation on Windows
Did it work?

BOOL CreateProcess (

in_opt LPCTSTR ApplicationName,
inout_opt  LPTSTR CommandLine, :I' What to run?
in_opt LPSECURITY_ATTRIBUTES ProcessAttributes,
in_opt LPSECURITY_ATTRIBUTES ThreadAttributes, What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags,
in_opt LPVOID Environment,
in_opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS_INFORMATION ProcessInformation
)i
\ The result

Moral: the parameter space is large! ‘

Unix fork () and exec ()

Dramatically simplifies creating processes:
1. fork(): creates “child” copy of calling process

2. exec():replaces text of calling process with a new program

3. There is no “CreateProcess(...)".

Unix is entirely constructed as a family tree of such processes.

FI\,

splintethzch
W @spol_eth

Unix as a process tree

FI0 FGI0 SIDTIY TG0 ST UID
11 EES o

D TIVE (RO 3

1 ? a1 o

Exercise:
work out how
to do this on
your favorite
Unix or Linux
machine...

3
arch o6 1432

Fork in action

Return code from
fork() tells you
whether you're in the
parent or child
(cf. setjmp())

pid_t p = fork();
if (p<0) {
// Error..
exit(-1);
} else if (p ==0) {
// We’re in the child
execlp (“/bin/1s”, “1s”, NULL);
} else {
// We’re a parent.
// p is the pid of the child
wait (NULL) ;
exit(0) ;

Child process can't
actually be cleaned
up until parent
“waits” for it.

22

A spcl.inf.ethz.ch
YN, Yamien

FI\,

splintethzch
W @spol_eth

Process state diagram for Unix

preemption
forked It really is
called a
' Zombie
runnable

(ready)
“undead”

110
completes'

110
operation

blocked
(waiting)

parent

Dead calls wait()

(and gone)

Kernel Threads




y'“".\. v

int.ethz.ch
@spel_oth

2015-02-19

A ‘spel.inf.ethz.ch
Y\ Ve

How do threads fit in?

= |t depends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

= In these, the CPU offers more physical resources for threads!

= Do NOT confuse this with hardware threads/SMT/Hyperthreading

Al

Process switching

Process A Kernel

[Process A executes]

Save state to PCB(A)

What's
happening
here?

Time

Restore from PCB(B)

A spel.inf.ethz.ch
VYN, Y ameon

Process B

Athread?

[Process B executes]

Save state to PCB(B)

[Kernel executes]

Restore from PCB(A)

[Process A executes]

Process switching revisited

Kernel stack A Kernel stack B
Kernel stack 0

Process A

Save to PCB(A)

Decide to
switch
process

For a kernel with
multiple kernel
stacks

Pick
process to run

With cleverness,
can sometimes
run scheduler on
current process’
kernel stack.

y'“".\. v

Process B

int.ethz.ch
@spel_oth

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
* MuchasinaJVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

26

A spel.inf.ethz.ch
Y\ Voo

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design
= Q. On which stack does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!
= Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

28

A spel.inf.ethz.ch
Y\ Ve

System Calls in more detail

= We can now say in more detail what happens during a system
call

. Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

. Linux:
. Good old int 0x80 or 0x2e (software interrupt, syscall number in EAX)
Set up registers and call handler
. Fast system calls (sysenter/sysexit, >Pentium II)
CPU sets up registers automatically

30




2015-02-19

YA Senra A Gea
Performing a system call System calls in the kernel
In user space:
1. Marshall the arguments somewhere safe - Kernel entered at fixed address
2. Saves registers . Privileged mode is set
3.  Loads system call number . Need to call the right function and return, so:
4.  Executes SYSCALL instruction 1. Save user stack pointer and return address
(or SYSENTER, or INT 0x80, or..) —  Inthe Process Control Block
5. And? 2. Load SP for this process’ kernel stack
3. Create a C stack frame on the kernel stack
4. Look up the syscall number in a jump table
5. Call the function (e.g. read (), getpid(), open(), etc.)

W @spol_eth

A ‘spcl.inf.ethz.ch A ‘spel.inf.ethz.ch
‘\-,v“%'\. W @sp ot ,\"."W\' p

Returning in the kernel

= When function returns:
1. Load the user space stack pointer
2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary
3.  Execute “syscall return” instruction
= Result is execution back in user space, on user stack. User-space threads
. Alternatively, can do this to a different process...

YA S PO i
From now on assume: What are the options?
= Previous example was Unix 6" Edition: 1. Implement threads within a process
= Which had no threads per se, only processes 2 Multiple kernel threads in a process

= ie. P K | stack .
6. Frocess « Kemnel stac 3. Some combination of the above

= From now on, we’ll assume:
= Multiple kernel threads per CPU . and other more unusual cases we won't talk about...
= Efficient kernel context switching

= How do we implement user-visible threads?




A spel.inf.ethz.ch
I\ Ve

2015-02-19

splintethzch
W @spol_eth

Many-to-one threads

= Early “thread libraries”
= Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
= No kernel support required
= Also (confusingly) “Lightweight Processes”

_,\’Y‘w'\'

Many-to-one threads

M@%%ﬁﬁ@

Kernel

38

A spel.inf.ethz.ch
I\ Ve

_,\’Y‘w'\'

splintethzch
W @spol_eth

Address space layout for user level threads

Thread 1 stack

L1

» T

/ Thread 3 stack
Thread 2 stack

Stack

Just
ESS allocate BSS
Data on the Data
heap
Text Text

One-to-one user threads

= Every user thread is/has a kernel thread.
= Equivalent to:

= multiple processes sharing an address space

= Except that “process” now refers to a group of threads
= Most modern OS threads packages:

= Linux, Solaris, Windows XP, MacOSX, etc.

40

A spel.inf.ethz.ch
I\ Ve

splintethzch
W @spol_eth

One-to-one user threads

;@Mﬂ;;;

User

Kernel

_,\’Y‘w'\'

One-to-one user threads

Thread 1 stack

R

Thread 2 stack
1l e
» Thread 3 stack

Stack

L1
BSS BSS
Data Data
Text Text

42




‘\'?'W.\'

Comparison

User-level threads One-to-one threads

= Cheap to create and = Memory usage (kernel
destroy stack)

= Fast to context switch = Slow to switch

= Can block entire process = Easier to schedule

= Not just on system calls = Nicely handles blocking

splintethz.ch
W @spol_eth

‘\'?'W.\'

Many-to-many threads

RR

Kernel

splintethz.ch
W @spol_eth

2015-02-19

A ‘spel.inf.ethz.ch
Y\ Ve

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Only way to go for a multiprocessor
= |.e., pretty much everything these days
= Can “pin” user thread to kernel thread for performance/
predictability
= Thread migration costs are “interesting”...

44

A spel.inf.ethz.ch
Y\ Voo

Next week

= Synchronisation:

= How to implement those useful primitives
= Interprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

46




