spcl.inf.ethz.ch

Y @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00
Chapter 2: Processes

Acoustic Cryptanalysis
Genkin, Shamir, Tromer, Dec. 2013

“Here, we describe a new acoustic cryptanalysis
key extraction attack, applicable to GnuPG's
current implementation of RSA. The attack can 1

extract full 4096-bit RSA decryption keys from
=

laptop computers (of various models), within an i
[OFGGSOMEDEONE STEALS MY LAPTOP WHILE IM & hour, using the sound generated by the computer =
W’&;TW rrsyé"mté%%m .~ during the decryption of some chosen ciphertexts.” =

BUT AT LEAST THEY CANT INSTALL
DRIVERS WITHOUT MY PERMISSION.

http://tau.ac.il/~tromer/acoustic/
<aw *:‘.;\!\ U
b

spcl.inf.ethz.ch
Y @spcl_eth

Last time: introduction

o i : ?
Introduction: Why?—, Loschsystem hatte intaktes Triebwerk "geloscht”

Unglaublicher Fehler: Bei drei Dreamlinern waren Léschsysteme falsch

° ROIQS Of the OS verkabelt. Im FaIIe'elnes Br?ndes ware ?lcht das in Flammen stehende,
sondern das noch intakte Triebwerk geléscht worden.von Gerhard Hegmann

» Referee
* Jllusionist
« Glue

e Structure of an OS

spcl.inf.ethz.ch
Y @spcl_eth

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

spcl.inf.ethz.ch
Y @spcl_eth

Entering and exiting the kernel

spcl.inf.ethz.ch
Y @spcl_eth

When is the kernel entered?

= System Startup

= Exception (aka. trap): caused by user program
= Interrupt: caused by “something else”

= System calls

- Exception VS. Interrupt VS. System call (analog technology quiz, raise hand)
= Division by zero
= Fork
» |[ncoming network packet
= Segmentation violation
= Read
= Keyboard input

spcl.inf.ethz.ch
Y @spcl_eth

Recall: System Calls

= RPC to the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

User process Execute
P — Process resumes
runs syscall

User mode

Privileged mode

Execute kernel
code

Systemcalls 6

Jreasy

spcl.inf.ethz.ch
Y @spcl_eth

System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

Passed in processor registers
Stored in memory (address (pointer) in register)
Pushed on the stack

System library (libc) wraps as a C function
Kernel code wraps handler as C call

spcl.inf.ethz.ch
Y @spcl_eth

When is the kernel exited?

= Creating a new process
* |ncluding startup

= Resuming a process after a trap
= Exception, interrupt or system call

= User-level upcall
» Much like an interrupt, but to user-level

= Switching to another process

spcl.inf.ethz.ch
Y @spcl_eth

Processes

spcl.inf.ethz.ch
Y @spcl_eth

Process concept

“The execution of a program with restricted rights”
= Virtual machine, of sorts

= On older systems:
= Single dedicated processor
» Single address space
= System calls for OS functions

* |n software:
computer system = (kernel + processes)

10

spcl.inf.ethz.ch

Process ingredients

Virtual processor

= Address space

» Registers

= [nstruction Pointer / Program Counter

Program text (object code)
Program data (static, heap, stack)

OS “stuff”:

= Open files, sockets, CPU share,
= Security rights, etc.

Jreasy

Y @spcl_eth

1

spcl.inf.ethz.ch
Y @spcl_eth

Process address space

7EFFFEFF Should look
familiar ...

Stack

(addresses are examples: some
machines used the top address
bit to indicate kernel mode)

BSS
Data

Text

00000000

12

spcl.inf.ethz.ch
Y @spcl_eth

Process lifecycle

created
preemption

runnable
(ready)

dispatch

blocked
(waiting)

/O
completes

operation
terminated

13

spcl.inf.ethz.ch
Y @spcl_eth

Multiplexing

= OS time-division multiplexes processes
= QOr space-division on multiprocessors

= Each process has a Process Control Block (PCB)
» |n-kernel data structure
» Holds all virtual processor state
Identifier and/or name
Registers
Memory used, pointer to page table
Files and sockets open, etc.

14

spcl.inf.ethz.ch
Y @spcl_eth

Process control block

(D)

(®)

g >

o Stack £

2)

D =

© —_—

© ()

; @ GE, (other

Q ~< kernel

O data

o structures)
BSS

Process

Data Control
Text Block

15

spcl.inf.ethz.ch
Y @spcl_eth

Process switching

Process A Kernel Process B
[Process A executes]
= Ssave state to PCB(A)
GEJ [Kernel executes]l
=
Restore from PCB(B)
[Process B executes]
Save state to PCB(B) <
[Kernel executes]l
/ Restore from PCB(A)
¥ [Process A executes]

16

spcl.inf.ethz.ch
Y @spcl_eth

Process Creation

17

spcl.inf.ethz.ch
Y @spcl_eth

Process Creation

= Bootstrapping problem. Need:
= Code torun
= Memory torunitin
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

18

spcl.inf.ethz.ch
Y @spcl_eth

Process creation on Windows
/ Did it work?

BOOL CreateProcess (

LPCTSTR ApplicationName,
What to run?

in opt
inout opt

LPTSTR CommandLine,

in opt LPSECURITY ATTRIBUTES ProcessAttributes,
?n_ppt LPSECURITI_ATTRIBUTE? ThreadAttributes, | VVhatﬁgkﬂs
in BOOL InheritHandles, will it have?
in DWORD CreationFlags, _
in opt LPVOID Environment,
in opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS INFORMATION ProcessInformation
\ The result
Moral: the parameter space is large!

19

spcl.inf.ethz.ch
Y @spcl_eth

Unix fork () and exec ()

Dramatically simplifies creating processes:

1. fork (): creates “child” copy of calling process

2. exec(): replaces text of calling process with a new program
3. Thereis no “CreateProcess(...)”.

Unix is entirely constructed as a family tree of such processes.

spcl.inf.ethz.ch
Y @spcl_eth

Unix as a process tree

PPID PID PGID SID TTY TPGID STAT UID TIME COMMANMD |~
] 1 1 17? -1 Ss 0 0:01 /sbinfinit
1 437 436 436 7 -15 0 0:00 upstart-udev-bridge --daemon
1 433 433 439 7 -1 S<s 0 0:00 udevd --daemon
439 2095 439 439 ? -1 5¢ 0 0:00 “_ udevd --daemon
439 2096 439 439 7 -1 5¢ 0 0:00 “_ udevd --daemon
1 6% 657 657 ? -1 Ss 0 0300 dd bs=1 if=/proc/kmsg of=/var/run/rsyslog/k
1 664 B53 659 7 -1 51 101 0:00 rayslogd -c4
1 E7% 675 E75 7 -1 Ss 108 0:03 dbus-daemon --system —-fork
729 745 745 745 7 -1 Ss 110 0:00 _ avahi-daemon: chroot helper
1 731 731 7317 -1 Ss 111 0:02 hald --daemon=yes 0
731 853 731 731 7 -15 0 0:00 “_ hald-runner Exe rcise:
853 1044 731 731 7 -15 0 0:00 S_ fusr/lib/hal /hald-addon-rfkill-kill
853 1045 731 731 7 -15§ 0 0300 S_ Afusr/lib/hal/hald-addon-leds
853 1060 731 Y31 ? -15§ 0 0:00 “_ Ausr/lib/hal/hald-addon-generic-bac Work OUt hOW
853 1074 731 737 -1 1 0 0:01 “_ hald-addon-storage: polling /dev/sd :
853 1085 731 731 7 -1 0 0300 _ hald-addon-input: Listening on /dev to do this on
853 1100 731 731 7? -15§ 0 0:00 S_ Ausr/lib/hal/hald-addon-cpufreq f .t
853 1101 731 731 7? -15 111 0300 “_ hald-addon-acpi: listening on acpid
1 740 740 740 7 -1 Ssl 0 0:02 NetworkManager your avorite
740 1463 1463 740 7 -15§ 0 0:00 _ /sbinfdhclient -d -sf Ausr/1lib/NetworkH I I
1 751 751 7517 -1 Ss 0 0:00 gdw-binary UnIX or Llnux
751 985 YRl Vh1 7 -15§ 0 0300 N_ Ausr/lib/gdm/gdm-simple-slave --display .
985 1102 1102 1102 tty? 1102 Rs+ 0 3:42 _ /usr/bind¥ 30 -br -verbose -auth /v machine...
985 1346 Y51 751 7 -15 0 0:00 S_ Ausr/lib/gdm/gdm-session-worker
1346 1361 1361 1361 ? -1 Ss1 1000 0300 “_ ghome-session
1361 1413 1413 1413 7 -1 Ss 1000 0:00 S_ Ausr/bindssh-agent Ausr/bin
1361 1446 1446 1446 7 -1 Ss 1000 0300 S_ Ausr/bin/seahorse-agent —-e
1361 1789 1361 1361 7 -18§ 1000 0:00 S_ /bindsh Ausr/bindcompiz
1789 1904 1361 1361 ? -1 R 1000 0:48 | “_ Ausr/bin/compiz,real --
1904 1934 1934 1984 ? -1 Ss 1000 0300 | S_ /bindsh —¢ Ausr/bin
1984 1985 1934 1934 ? -15 1000 0:11 | S_ Ausr/bindgtk-wi
1361 1905 1361 1361 7 -18§ 1000 0:16 S_ gnhome-panel
1361 1907 1361 1361 ? -15 1000 0:04 S_ nautilus
1361 1912 1361 1361 ? -15§ 1000 0:01 “_ gnome-power-manager
1361 1913 1361 1361 ? -1 51 1000 0:00 S_ fusr/lib/evolution/2,28/evo
1361 1916 1361 1361 ? -15 1000 0:00 S_ Ausr/lib/policykit-1-gnome/
1361 1917 1361 1361 ? -15 1000 0:00 “_ bluetooth-applet
1361 1918 1361 1361 ? -15 1000 0:01 “_ update-notifier --startup-d—
1361 1921 1361 1361 ? -15 1000 0:00 “_ python Ausr/share/system-co| =
1361 1931 1361 1361 ? -15 1000 0300 S_ Ausr/lib/gnome-disk-utility
helenes ,.ce-2,6,31/arch/x86/1a32>

21

spcl.inf.ethz.ch
Y @spcl_eth

Fork in action

Return code from
pid_t p = fork(); fork() tells you
if (p< 0) { whether you're in the
parent or child

// Error..
(cf. setimp())

exit(-1);
} else if ((p == 0) {
// We’re in the child
execlp(“/bin/l1ls”, “1ls”, NULL);
} else {
// We’re a parent.
// p is the pid of the child

wait (NULL) ;

exit(0); Child process can’t
} actually be cleaned
up until parent
“‘waits” for it.

22

spcl.inf.ethz.ch
Y @spcl_eth

Process state diagram for Unix

preemption
forked It really is

called a
Zombie
runnable
(ready)
/O
blocked
(waiting)

completes operation

parent

Dead calls wait()

(and gone)

23

spcl.inf.ethz.ch
Y @spcl_eth

Kernel Threads

24

spcl.inf.ethz.ch
Y @spcl_eth

How do threads fit in?

= |t depends...

= Types of threads:
» Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

= Do NOT confuse this with hardware threads/SMT/Hyperthreading
= |n these, the CPU offers more physical resources for threads!

25

spcl.inf.ethz.ch
Y @spcl_eth

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
* Much asina JVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

Jreasy

26

spcl.inf.ethz.ch
Y @spcl_eth

Process switching

Process A Kernel Process B
[Process A executes]
T~ save state to PCB(A)
o hats]
E happening
here? Restore from PCB(B)
A thread?
[Process B executes]
Save state to PCB(B) <
[Kernel executes]l
/ Restore from PCB(A)
¥ [Process A executes]

27

spcl.inf.ethz.ch
Y @spcl_eth

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design

= Q. On which stack does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!

» Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

28

spcl.inf.ethz.ch
Y @spcl_eth

Process switching revisited

Process A Kernel stack A Kernel stack B Process B
H Kernel stack O

Save to PCB(A)

|

Decide to
switch
process
For a kernel with \ Pick
multiple kernel process to run =
WwIlChn 10
stacks \ Kernel
stack B
With clever_ness, Restore
can sometimes PCB(B)
run scheduler on T T—— —
current process’
kernel stack.

29

spcl.inf.ethz.ch
Y @spcl_eth

System Calls in more detail

- We can now say in more detail what happens during a system
call

- Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

= Linux:
. Good old int 0x80 or Ox2e (software interrupt, syscall number in EAX)
Set up registers and call handler
. Fast system calls (sysenter/sysexit, >Pentium II)
CPU sets up registers automatically

30

spcl.inf.ethz.ch
Y @spcl_eth

Performing a system call

In user space:
1. Marshall the arguments somewhere safe
2. Saves registers
3. Loads system call number
4

Executes SYSCALL instruction
(or SYSENTER, or INT 0x80, or..)

And?

o

31

spcl.inf.ethz.ch
Y @spcl_eth

System calls in the kernel

| Kernel entered at fixed address
. Privileged mode is set
: Need to call the right function and return, so:
1. Save user stack pointer and return address
— In the Process Control Block
Load SP for this process’ kernel stack
Create a C stack frame on the kernel stack
Look up the syscall number in a jump table
Call the function (e.g. read (), getpid (), open(), etc.)

o &~ wN

32

spcl.inf.ethz.ch
Y @spcl_eth

Returning in the kernel

: When function returns:
1. Load the user space stack pointer
2. Adjust the return address to point to:

Return path in user space back from the call, OR
Loop to retry system call if necessary

3. Execute “syscall return” instruction
- Result is execution back in user space, on user stack.
: Alternatively, can do this to a different process...

33

spcl.inf.ethz.ch
Y @spcl_eth

User-space threads

34

spcl.inf.ethz.ch
Y @spcl_eth

From now on assume:
= Previous example was Unix 6t Edition:

= Which had no threads per se, only processes
= j.e. Process < Kernel stack

= From now on, we’ll assume:
= Multiple kernel threads per CPU
= Efficient kernel context switching

= How do we implement user-visible threads?

35

spcl.inf.ethz.ch
Y @spcl_eth

What are the options?

1. Implement threads within a process
2. Multiple kernel threads in a process
3. Some combination of the above

. and other more unusual cases we won’t talk about...

36

spcl.inf.ethz.ch
Y @spcl_eth

Many-to-one threads

= Early “thread libraries”

» Green threads (original Java VM)
= GNU Portable Threads
» Standard student exercise: implement them!

= Sometimes called “pure user-level threads”

»= No kernel support required
= Also (confusingly) “Lightweight Processes”

37

Many-to-one threads

S
- \[/ T\/ \g/

S

38

Stack

BSS

Data

Text

»

Just

allocate
on the
heap

Jreasy

Address space layout for user level threads

spcl.inf.ethz.ch
Y @spcl_eth

Thread 1 stack

Ll

i)

Thread 3 stack

Thread 2 stack

BSS

Data

Text

39

spcl.inf.ethz.ch
Y @spcl_eth

One-to-one user threads

= Every user thread is/has a kernel thread.

= Equivalent to:
» multiple processes sharing an address space
= Except that “process” now refers to a group of threads

= Most modern OS threads packages:
» Linux, Solaris, Windows XP, MacOSX, etc.

40

spcl.inf.ethz.ch
Y @spcl_eth

One-to-one user threads

User

Kernel

S

41

spcl.inf.ethz.ch
Y @spcl_eth

One-to-one user threads

Thread 1 stack
Stack —
Thread 2 stack
@ el

Thread 3 stack

Il
BSS BSS
Data Data
Text Text

42

Comparison

User-level threads

Cheap to create and
destroy

Fast to context switch
Can block entire process
Not just on system calls

spcl.inf.ethz.ch
Y @spcl_eth

One-to-one threads

Memory usage (kernel
stack)

Slow to switch
Easier to schedule
Nicely handles blocking

43

spcl.inf.ethz.ch
Y @spcl_eth

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads

= Only way to go for a multiprocessor
= |.e., pretty much everything these days

= Can “pin” user thread to kernel thread for performance/
predictability

= Thread migration costs are “interesting”...

44

Many-to-many threads

S S S
w |X

Kernel

VV s
VAVin
\/V I

45

spcl.inf.ethz.ch
Y @spcl_eth

Next week

= Synchronisation:

= How to implement those useful primitives
= Interprocess communication

» How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

46

