
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating

Systems Chapter 12: Reliable

Storage, NUMA & The Future

Source: xkcd

spcl.inf.ethz.ch

@spcl_eth

  Friday (tomorrow) is a holiday, exercises will be skipped

  Exercises this Thursday (today!) will also be skipped

  Apologies for the late notice

  The last OS exercises will be the week after Easter

  First week of Networking part

  This is my last lecture this semester – Enjoy!!

Administrivia

spcl.inf.ethz.ch

@spcl_eth

Basic exam tips

  First of all, read the instructions

  Then, read the whole exam paper through

  Look at the number of points for each question

  This shows how long we think it will take to answer!

  Find one you know you can answer, and answer it

  This will make you feel better early on.

  Watch the clock!

  If you are taking too long on a question, consider dropping it and moving
on to another one.

  Always show your working

  You should be able to explain each summary slide

  Tip: form learning groups and present the slides to each other

  Do NOT overly focus on the quiz questions!

  Ask TAs if there are questions

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

  Receiver side scaling randomizes on a per-packet basis

  Virtual machines can be used to improve application performance

  Virtual machines can be used to consolidate servers

  A hypervisor implements functions similar to a normal OS

  If a CPU is strictly virtualizable, then OS code execution causes nearly no
overheads

  x86 is not strictly virtualizable because some instructions fail when
executed in ring 1

  x86 can be virtualized by binary rewriting

  A virtualized host operating system can set the hardware PTBR

  Paravirtualization does not require changes to the guest OS

  A page fault with shadow page tables is faster than nested page tables

  A page fault with writeable page tables is faster than shadow page tables

  Shadow page tables are safer than writable page tables

  Shadow page tables require paravirtualization

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Reliable Storage

OSPP Chapter 14

spcl.inf.ethz.ch

@spcl_eth

Reliability and Availabilty

A storage system is:

  Reliable if it continues to store data and can read and write it.

⇒ Reliability: probability it will be reliable for some period of

time

  Available if it responds to requests

⇒ Availability: probability it is available at any given time

spcl.inf.ethz.ch

@spcl_eth

What goes wrong?

1.  Operating interruption: Crash, power failure

  Approach: use transactions to ensure data is consistent

  Covered in the databases course

  See book for additional material

2.  Loss of data: Media failure

  Approach: use redundancy to tolerate loss of media

  E.g. RAID storage

  Topic for today

spcl.inf.ethz.ch

@spcl_eth

File system transactions

  Not widely supported

  Only one atomic operation in POSIX:

  Rename

  Careful design of file system data structures

  Recovery using fsck

  Superseded by transactions

  Internal to the file system

  Exposed to applications

spcl.inf.ethz.ch

@spcl_eth

What goes wrong?

1.  Operating interruption: Crash, power failure

  Approach: use transactions to ensure data is consistent

  Covered in the databases course

  See book for additional material

2.  Loss of data: Media failure

  Approach: use redundancy to tolerate loss of media

  E.g. RAID storage

  Topic for today

spcl.inf.ethz.ch

@spcl_eth

Media failures 1: Sector and page failures

Disk keeps working, but a sector doesn’t

  Sector writes don’t work, reads are corrupted

  Page failure: the same for Flash memory

Approaches:

1.  Error correcting codes:

  Encode data with redundancy to recover from errors

  Internally in the drive

2.  Remapping: identify bad sectors and avoid them

  Internally in the disk drive

  Externally in the OS / file system

spcl.inf.ethz.ch

@spcl_eth

Caveats

  Nonrecoverable error rates are significant

  And getting more so!

  Nonrecoverable error rates are not constant

  Affected by age, workload, etc.

  Failures are not independent

  Correlation in time and space

  Error rates are not uniform

  Different models of disk have different behavior over time

spcl.inf.ethz.ch

@spcl_eth

A well-respected disk available now from pcp.ch

Seagate Barracuda 3TB,

7200rpm, 64MB, 3TB, SATA-3

Price this weekend: CHF 119.-

 (last year CHF 105,-)

 (in 2013 CHF 150,-)

spcl.inf.ethz.ch

@spcl_eth

Specifications (from manufacturer’s website)

Persistent
errors that are
not masked by
coding inside

the drive

spcl.inf.ethz.ch

@spcl_eth

Unrecoverable read errors

Lots of assumptions:
Independent errors,

etc.

spcl.inf.ethz.ch

@spcl_eth

Media failures 2: Device failure

  Entire disk (or SSD) just stops working

  Note: always detected by the OS

  Explicit failure ⇒ less redundancy required

  Expressed as:

  Mean Time to Failure (MTTF)
(expected time before disk fails)

  Annual Failure Rate = 1/MTTF
(fraction of disks failing in a year)

spcl.inf.ethz.ch

@spcl_eth

Specifications (from manufacturer’s website)

spcl.inf.ethz.ch

@spcl_eth

Caveats

  Advertised failure rates can be misleading

  Depend on conditions, tests, definitions of failure…

  Failures are not uncorrelated

  Disks of similar age, close together in a rack, etc.

  MTTF is not useful life!

  Annual failure rate only applies during design life!

  Failure rates are not constant

  Devices fail very quickly or last a long time

spcl.inf.ethz.ch

@spcl_eth

And Reality?

(S.M.A.R.T – Self-Monitoring,
Analysis, and Reporting Technology)

spcl.inf.ethz.ch

@spcl_eth

Bathtub curve

Time

F
a

ilu
re

 r
a

te

Advertised failure rate

Infant
mortality

Disk
wears out

5 years

0.34%
per
year

spcl.inf.ethz.ch

@spcl_eth

RAID 1: simple mirroring

Disk 0

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Disk 1

Data block 0

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

Data block 6

Data block 7

Data block 8

Data block 9

Data block 10

Data block 11

…

Writes go to
both disks

Reads from
either disk

(may be faster)

Sector or whole
disk failure ⇒

data can still be
recovered

spcl.inf.ethz.ch

@spcl_eth

Parity disks and striping

Disk 0

Block 0

Block 4

Block 8

Block 12

Block 16

Block 20

Block 24

Block 28

Block 32

Block 36

Block 40

Block 44

…

Disk 1

Block 1

Block 5

Block 9

Block 13

Block 17

Block 21

Block 25

Block 29

Block 33

Block 37

Block 41

Block 45

…

Disk 2

Block 2

Block 6

Block 10

Block 14

Block 18

Block 22

Block 26

Block 30

Block 34

Block 38

Block 42

Block 46

…

Disk 3

Block 3

Block 7

Block 11

Block 15

Block 19

Block 23

Block 27

Block 31

Block 35

Block 39

Block 43

Block 47

…

Disk 4

Parity(0-3)

Parity(4-7)

Parity(8-11)

Parity(12-15)

Parity(16-19)

Parity(20-23)

Parity(24-27)

Parity(28-31)

Parity(32-35)

Parity(36-39)

Parity(40-43)

Parity(44-47)

…

spcl.inf.ethz.ch

@spcl_eth

Parity disks

High
overhead for
small writes

spcl.inf.ethz.ch

@spcl_eth

RAID5: Rotating parity

Disk 0

…

Block 32

Block 33

Block 34

Block 35

Strip(0,2)

Block 16

Block 17

Block 18

Block 19

Strip(0,1)

Parity(0,0)

Parity(1,0)

Parity(2,0)

Parity(3,0)

Strip(0,0)

Disk 1

…

Block 36

Block 37

Block 38

Block 39

Strip(1,2)

Parity(0,1)

Parity(1,1)

Parity(2,1)

Parity(3,1)

Strip(1,1)

Block 0

Block 1

Block 2

Block 3

Strip(1,0)

Disk 2

…

Parity(0,2)

Parity(1,2)

Parity(2,2)

Parity(3,2)

Strip(2,2)

Block 20

Block 21

Block 22

Block 23

Strip(2,1)

Block 4

Block 5

Block 6

Block 7

Strip(2,0)

Disk 3

…

Block 40

Block 41

Block 42

Block 43

Strip(3,2)

Block 24

Block 25

Block 26

Block 27

Strip(3,1)

Block 8

Block 9

Block 10

Block 11

Strip(3,0)

Disk 4

…

Block 44

Block 45

Block 46

Block 47

Strip(4,2)

Block 28

Block 29

Block 30

Block 31

Strip(4,1)

Block 12

Block 13

Block 14

Block 15

Strip(4,0)

S
tr

ip
e

 0

S
tr

ip
e

 1

S
tr

ip
e

 2

A strip of sequential
block on each disk
⇒ balance
parallelism with
sequential access
efficiency

Parity strip rotates
around disks with
successive stripes

Can service
widely-spaced
requests in
parallel

spcl.inf.ethz.ch

@spcl_eth

Atomic update of data and parity

What if system crashes in the middle?

1.  Use non-volatile write buffer

2.  Transactional update to blocks

3.  Recovery scan

  And hope nothing goes wrong during the scan

4.  Do nothing (seriously)

spcl.inf.ethz.ch

@spcl_eth

Recovery

  Unrecoverable read error on a sector:

  Remap bad sector

  Reconstruct contents from stripe and parity

  Whole disk failure:

  Replace disk

  Reconstruct data from the other disks

  Hope nothing else goes wrong…

spcl.inf.ethz.ch

@spcl_eth

Mean time to repair (MTTR)

RAID-5 can lose data in three ways:

1.  Two full disk failures (second while the first is recovering)

2.  Full disk failure and sector failure on another disk

3.  Overlapping sector failures on two disks

  MTTR: Mean time to repair

  Expected time from disk failure to when new disk is fully rewritten, often
hours

  MTTDL: Mean time to data loss

  Expected time until 1, 2 or 3 happens

spcl.inf.ethz.ch

@spcl_eth

Analysis

See the book for independent failures

  Key result: most likely scenario is #2.

Solutions:

1.  More redundant disks, erasure coding

2.  Scrubbing

  Regularly read the whole disk to catch UREs early

3.  Buy more expensive disks.

  I.e. disks with much lower error rates

4.  Hot spares

  Reduce time to plug/unplug disk

spcl.inf.ethz.ch

@spcl_eth

Hardware Trends

spcl.inf.ethz.ch

@spcl_eth

The future is exciting!
Intel (2006): “Multi-core processing is taking the
industry on a fast-moving and exciting ride into

profoundly new territory. The defining paradigm
in computing performance has shifted inexorably

from raw clock speed to parallel operations and
energy efficiency.”

Dan Reed (2011): “To address these challenges
and battle dark silicon, we need new ideas in

computer architecture, system software,
programming models and end-to-end user

experiences. It’s an epic struggle for the future
of computing.”

spcl.inf.ethz.ch

@spcl_eth

More and more cores …

  Like this dual-socket Sandy Bridge system:

2.3ns

35 ns

10 ns

70 ns

94 ns

107 ns

1 us

spcl.inf.ethz.ch

@spcl_eth

What does that mean, a nanosecond is short!!

  How fast can you add two numbers?

  You’re smart, so let’s say 1s 

  One core performs 8 floating point operations per cycle

  A cycle takes 0.45ns

  Then ….

  A L1 cache access (2.3ns) takes 5s

  A L2 cache access (10ns) takes 22s

  A L3 cache access (35ns) takes 78s

  A local DRAM access (70ns) takes 2.5 mins

  A remote chip access (94ns) takes 3.5 mins

  A remote DRAM access (107ns) takes 4 mins

  A remote node memory access (1us) takes 37 mins

spcl.inf.ethz.ch

@spcl_eth

Non-Uniform Memory Access (NUMA)

spcl.inf.ethz.ch

@spcl_eth

NUMA in Operating Systems

  Classify memory into NUMA nodes

  Affinity to processors and devices

  Node-local accesses are fastest

  Memory allocator and scheduler should cooperate!

  Schedule processes close to the NUMA node with their memory

  State of the art:

  Ignore it (no semantic difference)

  Striping in hardware (consecutive CLs come from different NUMA nodes)

Homogeneous performance, no support in OS needed

  Heuristics in NUMA-aware OS

  Special NUMA control in OS

  Application control

spcl.inf.ethz.ch

@spcl_eth

Heuristics in NUMA-aware OS

  “First touch” allocation policy

  Allocate memory in the node where the process is running

  Can create big problems for parallel applications (see DPHPC class)

  NUMA-aware scheduling

  Prefer CPUs in NUMA nodes where a process has memory

  Replicate “hot” OS data structures

  One copy per NUMA node

  Some do page striping in software

  Allocate pages round robin

  Unclear benefits

spcl.inf.ethz.ch

@spcl_eth

Special configurations

  Administrator/command line configurations

  Special tools (e.g., Linux)

taskset: set a process’ CPU affinity

numactl: set NUMA policies

  Application configuration

  Syscalls to control NUMA (e.g., Linux)

cpuset and friends, see “man 7 numa”

spcl.inf.ethz.ch

@spcl_eth

Non-local system times ☺

  One core performs 8 floating point operations per cycle

  A cycle takes 0.45ns

  Then ….

  A L1 cache access (2.3ns) takes 5s

  A L2 cache access (10ns) takes 22s

  A L3 cache access (35ns) takes 78s

  A local DRAM access (70ns) takes 2.5 mins

  A remote chip access (94ns) takes 3.5 mins

  A remote DRAM access (107ns) takes 4 mins

  A remote node memory access (1us) takes 37 mins

  Solid state disk access (100us) takes 2.6 days

  Magnetic disk access (5ms) takes 8.3 months

  Internet Zurich to Chicago (150ms) takes 10.3 years

  VMM OS reboot (4s) takes 277 years

  Physical machine reboot (30s) 2 millennia

spcl.inf.ethz.ch

@spcl_eth

How to compute fast?

spcl.inf.ethz.ch

@spcl_eth

Why computing fast?

  Computation is the third pillar

of science

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop in 1997

$67 Million

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 18 years later (2015)

1 TF

“Amazon.com by Intel even has the
co-processor selling for just $142

(plus $12 shipping) though they
seem to be now out of stock until

early December.” (Nov. 11, 2014)

2.9TF

3 TF

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 23 years later (2020)

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 33 years later (2030)

spcl.inf.ethz.ch

@spcl_eth

High-performance Computing (Supercomputing)

Vectorization

Multicore/SMP

Heterogeneous Computing

IEEE Floating Point

Datacenter Networking/RDMA

….

spcl.inf.ethz.ch

@spcl_eth

Top 500

  A benchmark, solve Ax=b

  As fast as possible!  as big as possible 

  Reflects some applications, not all, not even many

  Very good historic data!

  Speed comparison for

computing centers, states,

countries, nations,

continents "

  Politicized (sometimes good,
sometimes bad)

  Yet, fun to watch

iPad 2

My Laptop

My Xeon Phi

spcl.inf.ethz.ch

@spcl_eth

www.top500.org

IDC, 2009: “expects the
HPC technical server
market to grow at a
healthy 7% to 8% yearly
rate to reach revenues

of $13.4 billion by 2015.”

“The non-HPC portion of
the server market was
actually down 20.5 per
cent, to $34.6bn”

The November 2014 List

spcl.inf.ethz.ch

@spcl_eth

Case study: OS for High-Performance Computing

  Remember the OS design goals?

  What if performance is #1?

  Different environment

  Clusters, special architectures, datacenters

  Tens of thousands of nodes

  Hundreds of thousands of cores

  Millions of CHFs

  Unlimited fun 

spcl.inf.ethz.ch

@spcl_eth

Case Study: IBM Blue Gene

spcl.inf.ethz.ch

@spcl_eth

BlueGene/Q Compute chip
  360 mm² Cu-45 technology (SOI)

  ~ 1.47 B transistors

  16 user + 1 service processors
 plus 1 redundant processor
 all processors are symmetric
 each 4-way multi-threaded
 64 bits PowerISA™
 1.6 GHz
 L1 I/D cache = 16kB/16kB
 L1 prefetch engines
 each processor has Quad FPU
 (4-wide double precision, SIMD)

 peak performance 204.8
GFLOPS@55W

  Central shared L2 cache: 32 MB
 eDRAM
 multiversioned cache will support

transactional memory, speculative
execution.

 supports atomic ops

  Dual memory controller
 16 GB external DDR3 memory
 1.33 Gb/s
 2 * 16 byte-wide interface (+ECC)

  Chip-to-chip networking

 Router logic integrated into BQC chip.
 Ref: SC2010, IBM

spcl.inf.ethz.ch

@spcl_eth

1. Chip
16 cores

2. Module
Single Chip

4. Node Card
32 Compute Cards,

Optical Modules, Link Chips,

Torus

5a. Midplane
16 Node Cards

6. Rack
2 Midplanes

1, 2 or 4 I/O Drawers

7. System
 20PF/s

3. Compute Card
One single chip module,
16 GB DDR3 Memory

5b. I/O Drawer
8 I/O Cards

8 PCIe Gen2 slots

Blue Gene/Q packaging hierarchy

Ref: SC2010, IBM

16

16
16

512

8192

16384
~2 Mio

spcl.inf.ethz.ch

@spcl_eth

Blue Gene/L System Organization

Heterogeneous nodes:

  Compute (BG/L specific)

  Run specialized OS supporting computations
efficiently

  I/O (BG/L specific)

  Use OS flexibly supporting various forms of I/O

  Service (generic)

  Uses conventional off-the-shelf OS

  Provides support for the execution of compute
and I/O node operating systems

  Front-end (generic)

  Support program compilation, submission and
debugging

  File server (generic)

  Store data that the I/O nodes read and write

Source: Jose Moreira et al. “Designing Highly-Scalable Operating System: The Blue Gene/L Story”,
http://sc06.supercomputing.org/schedule/pdf/pap178.pdf

spcl.inf.ethz.ch

@spcl_eth

  CNK controls all access to hardware, and enables bypass for

application use

  User-space libraries and applications can directly access torus

and tree through bypass

  As a policy, user-space code should not directly touch hardware,

but there is no enforcement of that policy

Software Stack in Compute Node

BG/L ASIC

CNK Bypass

Application code

User-space libraries

Source: http://www.research.ibm.com/bluegene/presentations/BGWS_05_SystemSoftware.ppt

spcl.inf.ethz.ch

@spcl_eth

  Lean Linux-like kernel (fits in 1MB of memory)
  stay out of way and let the application run

  Performs job startup sequence on every node of a
partition
  Creates address space for execution of compute process(es)

  Loads code and initialized data for the executable

  Transfers processor control to the loaded executable

  Memory management
  Address spaces are flat and fixed (no paging), and fit statically into PowerPC

440 TLBs

  No process scheduling: only one thread per processor

  Processor control stays within the application, unless:
  The application issues a system call

  Timer interrupt is received (requested by the application code)

  An abnormal event is detected, requiring kernel’s attention

Compute Node Kernel (CNK)

spcl.inf.ethz.ch

@spcl_eth

CNK System Calls

  Compute Node Kernel supports

  68 Linux system calls (file I/O, directory operations, signals, process
information, time, sockets)

  18 CNK-specific calls (cache manipulation, SRAM and DRAM
management, machine and job information, special-purpose register
access)

  System call scenarios

  Simple calls requiring little OS functionality (e.g. accessing timing register)
are handled locally

  I/O calls using file system infrastructure or IP stack are shipped for
execution in the I/O node associated with the issuing compute node

  Unsupported calls requiring infrastructure not supported in BG/L (e.g.
fork() or mmap()) return immediately with error condition

spcl.inf.ethz.ch

@spcl_eth

  CIOD processes requests from

  Control system using socket to the service node

  Debug server using a pipe to a local process

  Compute nodes using the tree network

  I/O system call sequence:

  CNK trap

  Call parameters are packaged and
sent to CIOD in the corresponding I/O

node

  CIOD unpacks the message and
reissues it to Linux kernel on I/O node

  After call completes, the results are

sent back to the requesting CNK (and
the application)

Function Shipping from CNK to CIOD

Source: IBM

spcl.inf.ethz.ch

@spcl_eth

How to communicate?

  Communication is

key in problem

solving ☺

  Not just
relationships!

  Also scientific
computations

Source: top500.org

spcl.inf.ethz.ch

@spcl_eth

  Remember that guy?

  EDR

  2x2x100 Gb/s  ~50 GB/s

  Memory bandwidth: ~80 GB/s

  0.8 copies 

  Solution:

  RDMA, similar to DMA

  OS too expensive, bypass

  Communication offloading

Remote Direct Memory Access

spcl.inf.ethz.ch

@spcl_eth

  Components:

  Links/Channel adaptors

  Switches/Routers

  Routing is supported but rarely used, most IB networks are

“LANs”

  Supports arbitrary topologies

  “Typical” topologies: fat tree, torus, islands

  Link speed (all 4x):

  Single data rate (SDR): 10 Gb/s

  Double data rate (DDR): 20 Gb/s

  Quad data rate (QDR): 40 Gb/s

  Fourteen data rate (FDR): 56 Gb/s

  Enhanced data rate (EDR): 102 Gb/s

InfiniBand Overview

spcl.inf.ethz.ch

@spcl_eth

InfiniBand Network Structure

Source: IBA Spec

spcl.inf.ethz.ch

@spcl_eth

  No spanning tree protocol, allows parallel links&loops,

initialization phases:

  Topology discovery: discovery MADs

  Path computation: MinHop, …, DFSSSP

  Path distribution phase: Configure routing tables

  Problem: how to generate paths?

  MinHop == OSPF

  Potentially bad bandwidth allocation!

InfiniBand Subnet Routing

spcl.inf.ethz.ch

@spcl_eth

Interaction with IB HCAs

  Systems calls only for setup:

  Establish connection, register memory

  Communication (send/recv, put, get, atomics)

all in user-level!

  Through “verbs” interface

InfiniBand Device (HCA)

Send Recv
QP

CQ

spcl.inf.ethz.ch

@spcl_eth

Open Fabrics Stack

  OFED offers a unified programming interface

  Cf. Sockets

  Originated in IB verbs

  Direct interaction with device

  Direct memory exposure

Requires page pinning (avoid OS interference)

  Device offers

  User-level driver interface

  Memory-mapped registers

spcl.inf.ethz.ch

@spcl_eth

iWARP and RoCE

  iWARP: RDMA over TCP/IP

  Ups:

Routable with existing infrastructure

Easily portable (filtering, etc.)

  Downs:

Higher latency (complex TOE)

Higher complexity in NIC

TCP/IP is not designed for datacenter networks

  RoCE: RDMA over Converged Ethernet

  Data-center Ethernet!

spcl.inf.ethz.ch

@spcl_eth

Student Cluster Competition

  5 undergrads, 1 advisor, 1 cluster, 2x13 amps

  8 teams, 4 continents @SC

  48 hours, five applications, non-stop!

  top-class conference (>11000 attendees)

  Lots of fun

  Even more
experience!

  A Swiss team 2017?

  Search for “Student
Cluster Challenge”

  HPC-CH/CSCS may
help

spcl.inf.ethz.ch

@spcl_eth

What to remember in 10 years!

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

  Roles:

  Referee, Illusionist, Glue

  Example: processes, threads, and scheduling

  R: Scheduling algorithms (batch, interactive, realtime)

  I: Resource abstractions (memory, CPU)

  G: Syscalls, services, driver interface

  Slicing along another dimension:

  Abstractions

  Mechanisms

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

  IPC and other communications

  A: Sockets, channels, read/write

  M: Network devices, packets, protocols

  Memory Protection

  A: Access control

  M: Paging, protection rings, MMU

  Paging/Segmentation

  A: Infinite memory, performance

  M: Caching, TLB, replacement algorithms, tables

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

  Naming

  A: (hierarchical) name spaces

  M: DNS, name lookup, directories

  File System

  A: Files, directories, links

  M: Block allocation, inodes, tables

  I/O

  A: Device services (music, pictures )

  M: Registers, PIO, interrupts, DMA

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

  Reliability:

  A: reliable hardware (storage)

  M: Checksums, transactions, raid 0/5

  And everything can be virtualized!

  CPU, MMU, memory, devices, network

  A: virtualized x86 CPU

  M: paravirtualization, rewriting, hardware extensions

  A: virtualized memory protection/management

  M: writable pages, shadow pages, hw support, IOMMU

spcl.inf.ethz.ch

@spcl_eth

The Lecture’s Elevator Pitch

  Ok, fine, it was an escalator

pitch … in Moscow

  Please remember all

for at least 10 years!

  Systems principles

  … and how to make
them fast 

Escalator

spcl.inf.ethz.ch

@spcl_eth

Finito – Happy Easter!!

  Thanks for being such fun to teach ☺
  Comments (also anonymous) are always appreciated!

  If you are interested in parallel
computing research, talk to me!

  Large-scale (datacenter) systems

  Parallel computing (SMP and MPI)

  GPUs (CUDA), FPGAs, Manycore …

  … on twitter: @spcl_eth 

  Hope to see you again!

Maybe in Design of Parallel

and High-Performance

Computing next semester ☺

  Or theses:

http://spcl.inf.ethz.ch/SeMa/

