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  Friday (tomorrow) is a holiday, exercises will be skipped 

  Exercises this Thursday (today!) will also be skipped 

  Apologies for the late notice 

  The last OS exercises will be the week after Easter 

  First week of  Networking part 

  This is my last lecture this semester – Enjoy!! 

 

Administrivia 



spcl.inf.ethz.ch 

@spcl_eth 

Basic exam tips 

  First of all, read the instructions 

  Then, read the whole exam paper through 

  Look at the number of points for each question 

  This shows how long we think it will take to answer! 

  Find one you know you can answer, and answer it 

  This will make you feel better early on. 

  Watch the clock! 

  If you are taking too long on a question, consider dropping it and moving 
on to another one. 

  Always show your working 

  You should be able to explain each summary slide 

  Tip: form learning groups and present the slides to each other 

  Do NOT overly focus on the quiz questions! 

  Ask TAs if there are questions 
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  True or false (raise hand) 

  Receiver side scaling randomizes on a per-packet basis 

  Virtual machines can be used to improve application performance 

  Virtual machines can be used to consolidate servers 

  A hypervisor implements functions similar to a normal OS 

  If a CPU is strictly virtualizable, then OS code execution causes nearly no 
overheads 

  x86 is not strictly virtualizable because some instructions fail when 
executed in ring 1 

  x86 can be virtualized by binary rewriting 

  A virtualized host operating system can set the hardware PTBR 

  Paravirtualization does not require changes to the guest OS 

  A page fault with shadow page tables is faster than nested page tables 

  A page fault with writeable page tables is faster than shadow page tables 

  Shadow page tables are safer than writable page tables 

  Shadow page tables require paravirtualization 

Our Small Quiz 
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Reliable Storage 

OSPP Chapter 14 
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Reliability and Availabilty 

A storage system is: 

  Reliable if it continues to store data and can read and write it. 

⇒ Reliability: probability it will be reliable for some period of 

time 

  Available if it responds to requests 

⇒ Availability: probability it is available at any given time 
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What goes wrong? 

1.  Operating interruption: Crash, power failure 

  Approach: use transactions to ensure data is consistent 

  Covered in the databases course 

  See book for additional material 

2.  Loss of data: Media failure 

  Approach: use redundancy to tolerate loss of media 

  E.g. RAID storage 

  Topic for today 
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File system transactions 

  Not widely supported 

  Only one atomic operation in POSIX:  

  Rename 

  Careful design of file system data structures 

  Recovery using fsck 

  Superseded by transactions 

  Internal to the file system 

  Exposed to applications 
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What goes wrong? 

1.  Operating interruption: Crash, power failure 

  Approach: use transactions to ensure data is consistent 

  Covered in the databases course 

  See book for additional material 

2.  Loss of data: Media failure 

  Approach: use redundancy to tolerate loss of media 
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Media failures 1: Sector and page failures 

Disk keeps working, but a sector doesn’t 

  Sector writes don’t work, reads are corrupted 

  Page failure: the same for Flash memory 

 

Approaches: 

1.  Error correcting codes: 

  Encode data with redundancy to recover from errors 

  Internally in the drive 

2.  Remapping: identify bad sectors and avoid them 

  Internally in the disk drive 

  Externally in the OS / file system 
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Caveats 

  Nonrecoverable error rates are significant 

  And getting more so! 

  Nonrecoverable error rates are not constant 

  Affected by age, workload, etc. 

  Failures are not independent 

  Correlation in time and space 

  Error rates are not uniform 

  Different models of disk have different behavior over time 
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A well-respected disk available now from pcp.ch 

 

Seagate Barracuda 3TB,  

7200rpm, 64MB, 3TB, SATA-3 

 

Price this weekend: CHF 119.-  

                  (last year CHF 105,-) 

                  (in 2013 CHF 150,-) 
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Specifications  (from manufacturer’s website) 

Persistent 
errors that are 
not masked by 
coding inside 

the drive 
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Unrecoverable read errors 

Lots of assumptions: 
Independent errors, 

etc. 
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Media failures 2: Device failure 

  Entire disk (or SSD) just stops working 

  Note: always detected by the OS 

  Explicit failure ⇒ less redundancy required 

  Expressed as: 

  Mean Time to Failure (MTTF) 
(expected time before disk fails) 

  Annual Failure Rate = 1/MTTF 
(fraction of disks failing in a year) 
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Specifications  (from manufacturer’s website) 
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Caveats 

  Advertised failure rates can be misleading 

  Depend on conditions, tests, definitions of failure… 

  Failures are not uncorrelated 

  Disks of similar age, close together in a rack, etc. 

  MTTF is not useful life! 

  Annual failure rate only applies during design life! 

  Failure rates are not constant 

  Devices fail very quickly or last a long time 
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And Reality? 

(S.M.A.R.T – Self-Monitoring,  
Analysis, and Reporting Technology) 
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Disk 
wears out 

5 years 

0.34% 
per 
year 
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RAID 1: simple mirroring 

Disk 0 

Data block 0 

Data block 1 

Data block 2 

Data block 3 

Data block 4 

Data block 5 

Data block 6 

Data block 7 

Data block 8 

Data block 9 

Data block 10 

Data block 11 

… 

Disk 1 

Data block 0 

Data block 1 

Data block 2 

Data block 3 

Data block 4 

Data block 5 

Data block 6 

Data block 7 

Data block 8 

Data block 9 

Data block 10 

Data block 11 

… 

Writes go to 
both disks 

Reads from 
either disk 

(may be faster) 

Sector or whole 
disk failure ⇒ 

data can still be 
recovered 
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Parity disks and striping 

Disk 0 

Block 0 

Block 4 

Block 8 

Block 12 

Block 16 

Block 20 

Block 24 

Block 28 

Block 32 

Block 36 

Block 40 

Block 44 

… 

Disk 1 

Block 1 

Block 5 

Block 9 

Block 13 

Block 17 

Block 21 

Block 25 

Block 29 

Block 33 

Block 37 

Block 41 

Block 45 

… 

Disk 2 

Block 2 

Block 6 

Block 10 

Block 14 

Block 18 

Block 22 

Block 26 

Block 30 

Block 34 

Block 38 

Block 42 

Block 46 

… 

Disk 3 

Block 3 

Block 7 

Block 11 

Block 15 

Block 19 

Block 23 

Block 27 

Block 31 

Block 35 

Block 39 

Block 43 

Block 47 

… 

Disk 4 

Parity(0-3) 

Parity(4-7) 

Parity(8-11) 

Parity(12-15) 

Parity(16-19) 

Parity(20-23) 

Parity(24-27) 

Parity(28-31) 

Parity(32-35) 

Parity(36-39) 

Parity(40-43) 

Parity(44-47) 

… 
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Parity disks 

High 
overhead for 
small writes 
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RAID5: Rotating parity 

Disk 0 

… 

Block 32 

Block 33 

Block 34 

Block 35 

Strip(0,2) 

Block 16 

Block 17 

Block 18 

Block 19 

Strip(0,1) 

Parity(0,0) 

Parity(1,0) 

Parity(2,0) 

Parity(3,0) 

Strip(0,0) 

Disk 1 

… 

Block 36 

Block 37 

Block 38 

Block 39 

Strip(1,2) 

Parity(0,1) 

Parity(1,1) 

Parity(2,1) 

Parity(3,1) 

Strip(1,1) 

Block 0 

Block 1 

Block 2 

Block 3 

Strip(1,0) 

Disk 2 

… 

Parity(0,2) 

Parity(1,2) 

Parity(2,2) 

Parity(3,2) 

Strip(2,2) 

Block 20 

Block 21 

Block 22 

Block 23 

Strip(2,1) 

Block 4 

Block 5 

Block 6 

Block 7 

Strip(2,0) 

Disk 3 

… 

Block 40 

Block 41 

Block 42 

Block 43 

Strip(3,2) 

Block 24 

Block 25 

Block 26 

Block 27 

Strip(3,1) 

Block 8 

Block 9 

Block 10 

Block 11 

Strip(3,0) 

Disk 4 

… 

Block 44 

Block 45 

Block 46 

Block 47 

Strip(4,2) 

Block 28 

Block 29 

Block 30 

Block 31 

Strip(4,1) 

Block 12 

Block 13 

Block 14 

Block 15 

Strip(4,0) 

S
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A strip of sequential 
block on each disk  
⇒ balance 
parallelism with 
sequential access 
efficiency 

Parity strip rotates 
around disks with 
successive stripes 

Can service 
widely-spaced 
requests in 
parallel 
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Atomic update of data and parity 

What if system crashes in the middle? 

 

1.  Use non-volatile write buffer 

2.  Transactional update to blocks 

3.  Recovery scan 

  And hope nothing goes wrong during the scan 

4.  Do nothing (seriously) 
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Recovery 

  Unrecoverable read error on a sector: 

  Remap bad sector 

  Reconstruct contents from stripe and parity 

  Whole disk failure: 

  Replace disk 

  Reconstruct data from the other disks 

  Hope nothing else goes wrong… 
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Mean time to repair (MTTR) 

RAID-5 can lose data in three ways: 

1.  Two full disk failures (second while the first is recovering) 

2.  Full disk failure and sector failure on another disk 

3.  Overlapping sector failures on two disks 

  MTTR: Mean time to repair 

  Expected time from disk failure to when new disk is fully rewritten, often 
hours 

  MTTDL: Mean time to data loss 

  Expected time until 1, 2 or 3 happens 



spcl.inf.ethz.ch 

@spcl_eth 

Analysis 

See the book for independent failures 

  Key result: most likely scenario is #2. 

 

Solutions: 

1.  More redundant disks, erasure coding 

2.  Scrubbing 

  Regularly read the whole disk to catch UREs early 

3.  Buy more expensive disks. 

  I.e. disks with much lower error rates 

4.  Hot spares 

  Reduce time to plug/unplug disk 
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Hardware Trends 
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The future is exciting! 
Intel (2006): “Multi-core processing is taking the 
industry on a fast-moving and exciting ride into 

profoundly new territory. The defining paradigm 
in computing performance has shifted inexorably 

from raw clock speed to parallel operations and 
energy efficiency.” 

Dan Reed (2011): “To address these challenges 
and battle dark silicon, we need new ideas in 

computer architecture, system software, 
programming models and end-to-end user 

experiences. It’s an epic struggle for the future 
of computing.” 
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More and more cores … 

  Like this dual-socket Sandy Bridge system:  

2.3ns 

35 ns 

10 ns 

70 ns 

94 ns 

107 ns 

1 us 
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What does that mean, a nanosecond is short!! 

  How fast can you add two numbers? 

  You’re smart, so let’s say 1s  

  One core performs 8 floating point operations per cycle 

  A cycle takes 0.45ns 

  Then …. 

  A L1 cache access (2.3ns) takes 5s 

  A L2 cache access (10ns) takes 22s 

  A L3 cache access (35ns) takes 78s 

  A local DRAM access (70ns) takes 2.5 mins 

  A remote chip access (94ns) takes 3.5 mins 

  A remote DRAM access (107ns) takes 4 mins  

  A remote node memory access (1us) takes 37 mins 
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Non-Uniform Memory Access (NUMA) 
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NUMA in Operating Systems 

  Classify memory into NUMA nodes 

  Affinity to processors and devices 

  Node-local accesses are fastest 

  Memory allocator and scheduler should cooperate! 

  Schedule processes close to the NUMA node with their memory 

  State of the art: 

  Ignore it (no semantic difference) 

  Striping in hardware (consecutive CLs come from different NUMA nodes) 

Homogeneous performance, no support in OS needed 

  Heuristics in NUMA-aware OS 

  Special NUMA control in OS 

  Application control 
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Heuristics in NUMA-aware OS 

  “First touch” allocation policy 

  Allocate memory in the node where the process is running 

  Can create big problems for parallel applications (see DPHPC class) 

  NUMA-aware scheduling 

  Prefer CPUs in NUMA nodes where a process has memory 

  Replicate “hot” OS data structures 

  One copy per NUMA node 

  Some do page striping in software 

  Allocate pages round robin 

  Unclear benefits 
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Special configurations 

  Administrator/command line configurations 

  Special tools  (e.g., Linux) 

taskset: set a process’ CPU affinity 

numactl: set NUMA policies 

  Application configuration 

  Syscalls to control NUMA (e.g., Linux) 

cpuset and friends, see “man 7 numa”  
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Non-local system times ☺ 

  One core performs 8 floating point operations per cycle 

  A cycle takes 0.45ns 

  Then …. 

  A L1 cache access (2.3ns) takes 5s 

  A L2 cache access (10ns) takes 22s 

  A L3 cache access (35ns) takes 78s 

  A local DRAM access (70ns) takes 2.5 mins 

  A remote chip access (94ns) takes 3.5 mins 

  A remote DRAM access (107ns) takes 4 mins 

  A remote node memory access (1us) takes 37 mins 

  Solid state disk access (100us) takes 2.6 days 

  Magnetic disk access (5ms) takes 8.3 months 

  Internet Zurich to Chicago (150ms) takes 10.3 years 

  VMM OS reboot (4s) takes 277 years 

  Physical machine reboot (30s) 2 millennia 
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How to compute fast? 
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Why computing fast? 

  Computation is the third pillar  

of science 
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1 Teraflop in 1997 

$67 Million 
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1 Teraflop 18 years later (2015) 

1 TF 

“Amazon.com by Intel even has the 
co-processor selling for just $142 

(plus $12 shipping) though they 
seem to be now out of stock until 

early December.” (Nov. 11, 2014) 

2.9TF 

3 TF 
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1 Teraflop 23 years later (2020) 
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1 Teraflop 33 years later (2030) 
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High-performance Computing (Supercomputing) 

Vectorization 

Multicore/SMP 

Heterogeneous Computing 

IEEE Floating Point 

Datacenter Networking/RDMA 

…. 
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Top 500 

  A benchmark, solve Ax=b 

  As fast as possible!  as big as possible  

  Reflects some applications, not all, not even many 

  Very good historic data! 

  Speed comparison for  

computing centers, states,  

countries, nations,  

continents " 

  Politicized (sometimes good, 
sometimes bad) 

  Yet, fun to watch 

iPad 2 

My Laptop 

My Xeon Phi 
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www.top500.org 

IDC, 2009: “expects the  
HPC technical server  
market to  grow at a  
healthy 7% to 8% yearly  
rate to reach revenues  

of $13.4 billion by 2015.” 
 
“The non-HPC portion of  
the server market was  
actually down 20.5 per  
cent, to $34.6bn” 

The November 2014 List 
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Case study: OS for High-Performance Computing 

  Remember the OS design goals? 

  What if performance is #1? 

  Different environment 

  Clusters, special architectures, datacenters 

  Tens of thousands of nodes 

  Hundreds of thousands of cores 

  Millions of CHFs 

  Unlimited fun  
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Case Study: IBM Blue Gene 
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BlueGene/Q Compute chip 
  360 mm²  Cu-45 technology  (SOI) 

  ~ 1.47 B transistors 
 

  16 user + 1 service processors  
 plus 1 redundant processor 
 all processors are symmetric 
 each 4-way  multi-threaded 
 64 bits PowerISA™ 
 1.6 GHz 
 L1 I/D cache = 16kB/16kB 
 L1 prefetch engines 
 each processor has Quad FPU 
 (4-wide double precision, SIMD) 
 

 peak performance 204.8 
GFLOPS@55W 
 

  Central shared L2 cache: 32 MB  
 eDRAM 
 multiversioned cache will support 

transactional memory, speculative 
execution. 

 supports atomic ops 
 

  Dual memory controller  
 16 GB external DDR3 memory 
 1.33 Gb/s 
 2 * 16 byte-wide interface (+ECC)  

 
  Chip-to-chip networking 

 Router logic integrated into BQC chip. 
 Ref: SC2010, IBM 
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1. Chip 
16 cores 

2. Module 
Single Chip 

4. Node Card 
32 Compute Cards,  

Optical Modules, Link Chips, 

Torus 

5a. Midplane 
16 Node Cards 

6. Rack 
2 Midplanes 

1, 2 or 4 I/O Drawers 

7. System 
 20PF/s 

3. Compute Card 
One single chip module, 
16 GB DDR3 Memory 

5b. I/O Drawer 
8 I/O Cards 

8 PCIe Gen2 slots 

Blue Gene/Q packaging hierarchy 

Ref: SC2010, IBM 

16 

16 
16 

512 

8192 

16384 
~2 Mio 
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Blue Gene/L System Organization 

Heterogeneous nodes: 

  Compute (BG/L specific) 

  Run specialized OS supporting computations 
efficiently 

  I/O (BG/L specific) 

  Use OS flexibly supporting various forms of I/O 

  Service (generic) 

  Uses conventional off-the-shelf OS 

  Provides support for the execution of compute 
and I/O node operating systems 

  Front-end (generic) 

  Support program compilation, submission and 
debugging 

  File server (generic) 

  Store data that the I/O nodes read and write 

Source: Jose Moreira et al. “Designing Highly-Scalable Operating System: The Blue Gene/L Story”, 
http://sc06.supercomputing.org/schedule/pdf/pap178.pdf  
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  CNK controls all access to hardware, and enables bypass for 

application use 

  User-space libraries and applications can directly access torus 

and tree through bypass 

  As a policy, user-space code should not directly touch hardware, 

but there is no enforcement of that policy 

Software Stack in Compute Node 

BG/L ASIC 

CNK Bypass 

Application code 
 

 
User-space libraries 

Source: http://www.research.ibm.com/bluegene/presentations/BGWS_05_SystemSoftware.ppt  
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  Lean Linux-like kernel (fits in 1MB of memory) 
  stay out of way and let the application run 

  Performs job startup sequence on every node of a 
partition 
  Creates address space for execution of compute process(es) 

  Loads code and initialized data for the executable 

  Transfers processor control to the loaded executable 

  Memory management 
  Address spaces are flat and fixed (no paging), and fit statically into PowerPC 

440 TLBs 

  No process scheduling: only one thread per processor 

  Processor control stays within the application, unless: 
  The application issues a system call 

  Timer interrupt is received (requested by the application code) 

  An abnormal event is detected, requiring kernel’s attention 

Compute Node Kernel (CNK) 
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CNK System Calls 

  Compute Node Kernel supports 

  68 Linux system calls (file I/O, directory operations, signals, process 
information, time, sockets) 

  18 CNK-specific calls (cache manipulation, SRAM and DRAM 
management, machine and job information, special-purpose register 
access) 

  System call scenarios 

  Simple calls requiring little OS functionality (e.g. accessing timing register) 
are handled locally 

  I/O calls using file system infrastructure or IP stack are shipped for 
execution in the I/O node associated with the issuing compute node 

  Unsupported calls requiring infrastructure not supported in BG/L (e.g. 
fork() or mmap()) return immediately with error condition 
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  CIOD processes requests from 

  Control system using socket to the service node 

  Debug server using a pipe to a local process 

  Compute nodes using the tree network 

  I/O system call sequence: 

  CNK trap 

  Call parameters are packaged and  
sent to CIOD in the corresponding I/O  

node 

  CIOD unpacks the message and  
reissues it to Linux kernel on I/O node 

  After call completes, the results are  

sent back to the requesting CNK (and  
the application) 

Function Shipping from CNK to CIOD 

Source: IBM 
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How to communicate? 

  Communication is  

key in problem  

solving ☺ 

  Not just 
relationships! 

  Also scientific 
computations 

Source: top500.org 
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  Remember that guy? 

  EDR 

  2x2x100 Gb/s   ~50 GB/s 

  Memory bandwidth: ~80 GB/s 

  0.8 copies  

  Solution: 

  RDMA, similar to DMA 

  OS too expensive, bypass 

  Communication offloading 

Remote Direct Memory Access 
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  Components:  

  Links/Channel adaptors 

  Switches/Routers 

  Routing is supported but rarely used, most IB networks are 

“LANs” 

  Supports arbitrary topologies 

  “Typical” topologies: fat tree, torus, islands 

  Link speed (all 4x): 

  Single data rate (SDR): 10 Gb/s 

  Double data rate (DDR): 20 Gb/s 

  Quad data rate (QDR): 40 Gb/s 

  Fourteen data rate (FDR): 56 Gb/s 

  Enhanced data rate (EDR): 102 Gb/s 

 

 

InfiniBand Overview 
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InfiniBand Network Structure 

Source: IBA Spec 
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  No spanning tree protocol, allows parallel links&loops, 

initialization phases: 

  Topology discovery: discovery MADs 

  Path computation: MinHop, …, DFSSSP 

  Path distribution phase: Configure routing tables 

  Problem: how to generate paths? 

  MinHop == OSPF 

  Potentially bad bandwidth allocation! 

 

InfiniBand Subnet Routing 
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Interaction with IB HCAs 

  Systems calls only for setup: 

  Establish connection, register memory 

  Communication (send/recv, put, get, atomics) 

all in user-level! 

  Through “verbs” interface 

InfiniBand Device (HCA) 

Send Recv 
QP 

CQ 
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Open Fabrics Stack 

  OFED offers a unified programming interface 

  Cf. Sockets 

  Originated in IB verbs 

  Direct interaction with device 

  Direct memory exposure  

Requires page pinning (avoid OS interference) 

  Device offers 

  User-level driver interface 

  Memory-mapped registers 
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iWARP and RoCE 

  iWARP: RDMA over TCP/IP 

  Ups: 

Routable with existing infrastructure 

Easily portable  (filtering, etc.) 

  Downs: 

Higher latency (complex TOE) 

Higher complexity in NIC 

TCP/IP is not designed for datacenter networks 

  RoCE: RDMA over Converged Ethernet 

  Data-center Ethernet! 
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Student Cluster Competition 

  5 undergrads, 1 advisor, 1 cluster, 2x13 amps 

  8 teams, 4 continents @SC 

  48 hours, five applications, non-stop! 

  top-class conference (>11000 attendees) 

  Lots of fun 

  Even more  
experience! 

  A Swiss team 2017? 

  Search for “Student  
Cluster Challenge” 

  HPC-CH/CSCS may  
help 
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What to remember in 10 years! 
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The Lecture’s Elevator Pitch 

  Roles: 

  Referee, Illusionist, Glue 

  Example: processes, threads, and scheduling 

  R: Scheduling algorithms (batch, interactive, realtime) 

  I: Resource abstractions (memory, CPU) 

  G: Syscalls, services, driver interface 

  Slicing along another dimension: 

  Abstractions 

  Mechanisms 
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The Lecture’s Elevator Pitch 

  IPC and other communications  

  A: Sockets, channels, read/write 

  M: Network devices, packets, protocols 

  Memory Protection 

  A: Access control 

  M: Paging, protection rings, MMU 

  Paging/Segmentation 

  A: Infinite memory, performance 

  M: Caching, TLB, replacement algorithms, tables 



spcl.inf.ethz.ch 

@spcl_eth 

The Lecture’s Elevator Pitch 

  Naming 

  A: (hierarchical) name spaces 

  M: DNS, name lookup, directories 

  File System 

  A: Files, directories, links 

  M: Block allocation, inodes, tables 

  I/O 

  A: Device services (music, pictures ) 

  M: Registers, PIO, interrupts, DMA 



spcl.inf.ethz.ch 

@spcl_eth 

The Lecture’s Elevator Pitch 

  Reliability: 

  A: reliable hardware (storage) 

  M: Checksums, transactions, raid 0/5 

  And everything can be virtualized! 

  CPU, MMU, memory, devices, network 

  A: virtualized x86 CPU 

  M: paravirtualization, rewriting, hardware extensions 

  A: virtualized memory protection/management 

  M: writable pages, shadow pages, hw support, IOMMU  
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The Lecture’s Elevator Pitch 

  Ok, fine, it was an escalator 

pitch … in Moscow 

  Please remember all 

for at least 10 years! 

  Systems principles 

  … and how to make  
them fast  

Escalator 



spcl.inf.ethz.ch 

@spcl_eth 

Finito – Happy Easter!! 

  Thanks for being such fun to teach ☺ 
  Comments (also anonymous) are always appreciated! 

  If you are interested in parallel  
computing research, talk to me! 

  Large-scale (datacenter) systems 

  Parallel computing (SMP and MPI) 

  GPUs (CUDA), FPGAs, Manycore … 

  … on twitter: @spcl_eth  

  Hope to see you again! 

Maybe in Design of Parallel  

and High-Performance  

Computing next semester ☺ 

  Or theses: 

http://spcl.inf.ethz.ch/SeMa/ 


