il spcl.inf.ethz.ch

ETHziirich o) A W @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER A SIGINT in time saves a kill -9

Networks and Operating Systems (252-0062-00j

Chapter 11: Virtual Machine Monitor{s,;;

= ot

NetKAT: A Formal System for the Verification of Networks
Dexter Kozen, Cornell University

<y S
{gl ' Monday, March 30, 2015 =
16:15-17:15, CAB G61 ii‘i

[SSE8 ABSTRACT: Vi
NetKAT is a relatively new programming language and logic for reasoning about packet switching ===
networks that fits well with the popular software defined networking (SDN) paradigm. NetKAT

.| was introduced quite recently by Anderson et al. (POPL 2014) and further developed by Foster et
B al. (POPL 2015). The system provides general-purpose programming constructs such as parallel
and sequential composition, conditional tests and iteration as well as special-purpose primitives
for querying and modifying packet headers and encoding network topologies. The language
allows the desired behavior of a network to be specified equationally. It has a formal
mathematical semantics and a deductive system that is sound and complete over that semantics, . I
as well as an efficient decision procedure for the automatic verification of equationally-defined =
properties of networks.

o -

spcl.inf.ethz.ch

ETHziirich o s ¥ @spcl_eth

Our Small Quiz

= True or false (raise hand)
= Spooling can be used to improve access times
= Buffering can cope with device speed mismatches
= The Linux kernel identifies devices using a number
= From userspace, devices in Linux are identified through files
= Standard BSD sockets require two or more copies at the host
= Protocols are processed in the first level interrupt handler
= The second level interrupt handler copies the packet data to userspace
= Deferred procedure calls can be executed in any process context
= Unix mbufs (and skbufs) enable protocol-independent processing
= Network I/O is not performance-critical
= NAPI's design aims to reduce the CPU load
= NAPI uses polling to accelerate packet processing
= TCP offload reduces the server CPU load
= TCP offload can accelerate applications

2015-03-26

2015-03-26

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Receive-side scaling

= [Insight:
= Too much traffic for one core to handle

= Cores aren’t getting any faster
= Must parallelize across cores

= Key idea: handle different flows on different cores
= But: how to determine flow for each packet?
= Can’t do this on a core: same problem!
= Solution: demultiplex on the NIC
= DMA packets to per-flow buffers / queues
= Send interrupt only to core handling flow

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Receive-side scaling

Flow table
Received
packet
pointer
\) Flow state:
IP src + dest * Ring buffer
s TCP src + dest * Message-signalled interrupt
C. l |

Hash of
packet
header

DMA Core to
address interrupt

spcl.inf.ethz.ch

ETHziirich o8 ¥ @spcl_eth

Receive-side scaling

= Can balance flows across cores
= Note: doesn’t help with one big flow!

= Assumes:
= n cores processing m flows is faster than one core
= Hence:

= Network stack and protocol graph must scale on a multiprocessor.
= Multiprocessor scaling: topic for later (see DPHPC class)

spcl.inf.ethz.ch

ETHziirich o8 ¥ @spcl_eth

Virtual Machine Monitors

Literature: Barham et al.: Xen and the art of virtualization
and Anderson, Dahlin: Operating Systems: Principles and

Practice, Chapter 14 6

2015-03-26

ETHziirich

Virtual Machine Monitors

= Basic definitions
= Why would you want one?
= Structure
= How does it work?
= CPU
= MMU
= Memory
= Devices
= Network

spcl.inf.ethz.ch
¥ @spcl_eth

» Acknowledgement:
Thanks to Steve
Hand for some of
the slides!

ETHziirich

= Contrast with OS processes

= Old idea: IBM VM/CMS (1960s)

What is a Virtual Machine Monitor?

= Virtualizes an entire (hardware) machine
= Interface provided is “illusion of real hardware”

= Applications are therefore complete Operating Systems themselves
» Terminology: Guest Operating Systems

= Recently revived: VMware, Xen, Hyper-V, kvm, etc.

spcl.inf.ethz.ch
¥ @spcl_eth

2015-03-26

2015-03-26

. gl spcl.inf.ethz.ch
ETHzirich -

/..< Y ¥ @spcl_eth

VMMs and Hypervisors

Q. Q. Q. Qo
Q. Q. Q. Q.
distinguish the

Virtual Machine
Guegt Gues_,t Monitor from the
operating operating Hypervisor
system system (we won't)
Creates
illusion of VMM VMM
hardware Hypervisor

Real hardware

. gl spcl.inf.ethz.ch
ETHziirich -

/..< Y ¥ @spcl_eth

Why would you want one?

= Server consolidation (program assumes own machine)
= Performance isolation

= Backward compatibility

= Cloud computing (unit of selling cycles)

= OS development/testing

= Something under the OS: replay, auditing, trusted computing,
rootkits

2015-03-26

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Running multiple OSes on one machine

= Application
compatibility
= | use Debian for

almost everything,

2l g 2| 2 2l but | edit slides in
<|| < <|| < <|| < PowerPoint
= Some people

compile Barrelfish in
a Debian VM over
Windows 7 with
Hyper-V

_

Windows 7

= Backward
compatibility
= Nothing beats a
Windows 98 virtual

Real hardware machine for playing
old computer games

Hypervisor

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Server consolidation

= Many applications
assume they have
the machine to
themselves

= Each machine is
mostly idle

’ = Consolidate

Iy servers onto a

single physical

machine

Application

Application

Application

Iy

Windows 7

Windows 7

Hypervisor

Real hardware

2015-03-26

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Resource isolation

= Surprisingly,
modern OSes do
not have an
abstraction for a
single application

= Performance
isolation can be
critical in some
enterprises

= Use virtual
machines as
resource
containers

Application
Application
Application

0,

@

Hypervisor

O,

Real hardware

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Cloud computing

= Selling computing
capacity on
demand
= E.g. Amazon EC2,

GoGirid, etc.

= Hypervisors
decouple
allocation of
resources (VMs)

@@ from provisioning
,,,,,,,, .
e of infrastructure
(physical

machines)

2015-03-26

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Operating System development

= Building and
testing a new OS
without needing
to reboot real
hardware

= VMM often gives

‘ you more

gf"\‘ iy information about

o | Iy
w Windows faults than real

hardware anyway

Compiler
Editor

Hypervisor

Real hardware

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Other cool applications...

= Tracing
= Debugging
= Execution replay

= Lock-step
execution

= Live migration
= Rollback

= Speculation

= Etc....

Application

Tracer
Application

Hypervisor

Real hardware

ETHziirich ROL

How does it all work?

= Note: a hypervisor is basically an OS
= With an “unusual API”
= Many functions quite similar:
= Multiplexing resources
= Scheduling, virtual memory, device drivers
= Different:
= Creating the illusion of hardware to “applications”
= Guest OSes are less flexible in resource requirements

spcl.inf.ethz.ch
¥ @spcl_eth

spcl.inf.ethz.ch

ETH ziirich s AT @
Hosted VMMs
o o
o o
c c <|| < Examples:
-% -‘% + VMware workstation
L L Guest ¢ Linux KVM
8 g operating * Microsoft Hyper-V
< < system * VirtualBox
VMM |
Host operating system
Real hardware

2015-03-26

2015-03-26

spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich

L

Hypervisor-based VMMs

2 —-—
25 33 33
3= Examples:
* VMware ESX

C()I\C;Insn(])tl)e Guest Guest . IXBel\: VMICMS
o esr;atin operating operating
P 9 system system
system
VMM VMM VMM

Hypervisor

Real hardware

spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich

O

How to virtualize...

= The CPU (s)?

= The MMU?

= Physical memory?

= Devices (disks, etc.)?
= The Network

and?

10

¥ @spcl_eth

. e spcl.inf.ethz.ch
ETHziirich o 7

Virtualizing the CPU

A CPU architecture is strictly virtualizable if it can be perfectly
emulated over itself, with all non-privileged instructions
executed natively

Privileged instructions = trap
= Kernel-mode (i.e., the VMM) emulates instruction
= Guest’s kernel mode is actually user mode

Or another, extra privilege level (such as ring 1)

Examples: IBM S/390, Alpha, PowerPC

¥ @spcl_eth

. e spcl.inf.ethz.ch
ETHziirich o 7

Virtualizing the CPU

A strictly virtualizable processor can execute a complete native
Guest OS

= Guest applications run in user mode as before
= Guest kernel works exactly as before

Problem: x86 architecture is not virtualizable ®
= About 20 instructions are sensitive but not privileged
= Mostly segment loads and processor flag manipulation

2015-03-26

11

spcl.inf.ethz.ch

ETHziirich ey Y T- ¥ @spcl_eth

Non-virtualizable x86: example

= PUSHF/POPF instructions
= Push/pop condition code register
= Includes interrupt enable flag (IF)

= Unprivileged instructions: fine in user space!
= IFisignored by POPF in user mode, not in kernel mode

= VMM can’t determine if Guest OS wants interrupts disabled!
= Can’t cause a trap on a (privileged) POPF
= Prevents correct functioning of the Guest OS

spcl.inf.ethz.ch

ETHziirich ey Y - ¥ @spcl_eth

Solutions

1. Emulation: emulate all kernel-mode code in software
= Very slow — particularly for I/O intensive workloads
= Used by, e.g., SoftPC
2. Paravirtualization: modify Guest OS kernel
= Replace critical calls with explicit trap instruction to VMM
= Also called a “HyperCall” (used for all kinds of things)
= Used by, e.g., Xen
3. Binary rewriting:
» Protect kernel instruction pages, trap to VMM on first IFetch
= Scan page for POPF instructions and replace
= Restart instruction in Guest OS and continue
= Used by, e.g. VMware
4. Hardware support: Intel VT-x, AMD-V
= Extra processor mode causes POPF to trap

2015-03-26

12

2015-03-26

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Virtualizing the MMU

= Hypervisor allocates memory to VMs
= Guest assumes control over all physical memory
= VMM can't let Guest OS to install mappings
= Definitions needed:
= Virtual address: a virtual address in the guest
= Physical address: as seen by the guest
= Machine address: real physical address
As seen by the Hypervisor

spcl.inf.ethz.ch

ETHziirich S X7 - ¥ @spcl_eth
Virtual/Physical/Machine
Guest Guest Machine
Virtual AS Physical AS Memory
17
Guest 1:
2
5
6
Guest 2:
5

13

. e spcl.inf.ethz.ch
ETHziirich 3 Y Y W @spel_eth

MMU Virtualization

= Critical for performance, challenging to make fast, especially
SMP
= Hot-unplug unnecessary virtual CPUs
= Use multicast TLB flush paravirtualizations etc.
= Xen supports 3 MMU virtualization modes
1. Direct (“Writable”) pagetables
2. Shadow pagetables
3. Hardware Assisted Paging
= OS Paravirtualization compulsory for #1, optional (and very
beneficial) for #2&3

. e spcl.inf.ethz.ch
ETHziirich 3 Y Y W @spel_eth

Paravirtualization approach

= Guest OS creates page tables the hardware uses
= VMM must validate all updates to page tables
= Requires modifications to Guest OS
= Not quite enough...
= VMM must check all writes to PTEs
= Write-protect all PTEs to the Guest kernel
= Add a HyperCall to update PTEs
= Batch updates to avoid trap overhead
= OS is now aware of machine addresses
= Significant overhead!

2015-03-26

14

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

Paravirtualizing the MMU

= Hypercall to change PT base

= 2. Pagetable pages may only be ma

for bulk updates

= Guest OSes allocate and manage own PTs

= VMM must validate PT updates before use
= Allows incremental updates, avoids revalidation
= Validation rules applied to each PTE:
= 1. Guest may only map pages it owns

pped RO

= VMM traps PTE updates and emulates, or ‘unhooks’ PTE page

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

Writeable Page Tables : 1

guest reads

\

— Write fault

Virtual — Machine

first guest
write
| Guest OS
page fault
VMM
[
MMU Hardware

2015-03-26

15

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Writeable Page Tables : 2 — Emulate?

guest reads

\ Virtual — Machine

first guest
write
- Guest OS
yes
emulate?
VMM
/
MMU Hardware

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Writeable Page Tables : 3 - Unhook

guest reads

Cwrit \ Virtual — Machine
guest writes

Guest OS
VMM
/
MMU Hardware

2015-03-26

16

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Writeable Page Tables : 4 - First Use

guest reads

Cwrit \ Virtual — Machine
guest writes

Guest OS
page fault
VMM
/
MMU Hardware

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

Writeable Page Tables : 5 — Re-hook

guest reads

Cwrit \ Virtual — Machine
guest writes

| i Guest OS
validate
VMM
/
MMU Hardware

2015-03-26

17

2015-03-26

ETHziirich e AT Vamon
Writeable page tables require paravirtualization
Guest Machine
Virtual AS Memory
17
Guest 1:
5
Guests directly share
Machine Memory
6
Guest 2:
5

. e spcl.inf.ethz.ch
ETHziirich o Y Y Nx W @spel_eth

Shadow page tables

= Guest OS sets up its own page tables
= Not used by the hardware!
= VMM maintains shadow page tables
= Map directly from Guest VAs to Machine Addresses
= Hardware switched whenever Guest reloads PTBR
= VMM must keep V—M table consistent with Guest V—P table and
it’'s own P—M table
= VMM write-protects all guest page tables
= Write = trap: apply write to shadow table as well
= Significant overhead!

18

spcl.inf.ethz.ch
¥ @spcl_eth

ETHzirich
Shadow page tables
Guest Guest

Virtual AS Physical AS

Guest 1:

—

5

Guest 2: /
5

L

Machine
Memory

/ 17
\

Shadow page

table mappings

/ 6

ETHziirich

spcl.inf.ethz.ch
¥ @spcl_eth

O

guest reads

Shadow page tables

Virtual — Guest-Physical

—— |

guest writes

accessed an
dirty bits

* Guest changes
optional, but help

with batching,
knowing when to
unshadow

» Latest algorithms
work remarkably
well

L]
Guest OS
updates
Virtual — Machine
VMM
/
MMU Hardware

2015-03-26

19

spcl.inf.ethz.ch

ETHzirich 23S YN Y Gopet o

Hardware support

= “Nested page tables”
= Relatively new in AMD (NPT) and Intel (EPT) hardware
= Two-level translation of addresses in the MMU
= Hardware knows about:
V—P tables (in the Guest)
P—M tables (in the Hypervisor)
= Tagged TLBs to avoid expensive flush on a VM entry/exit
= Very nice and easy to code to
* One reason kvm is so small
= Significant performance overhead...

spcl.inf.ethz.ch

ETHzirich 23S YN Y Gopet o

Memory allocation

= Guest OS is not expecting physical memory to change in size!
= Two problems:

= Hypervisor wants to overcommit RAM

» How to reallocate (machine) memory between VMs
= Phenomenon: Double Paging

= Hypervisor pages out memory

= GuestOS decides to page out physical frame

= (Unwittingly) faults it in via the Hypervisor, only to write it out again

2015-03-26

20

e L g spclinf.ethz.ch
ETHzirich

/..< R4S ¥ @spcl_eth

Ballooning

= Technique to reclaim memory from a Guest

= |Install a “balloon driver” in Guest kernel
= Can allocate and free kernel physical memory
Just like any other part of the kernel

= Uses HyperCalls to return frames to the Hypervisor, and have them
returned

Guest OS is unware, simply allocates physical memory

e L g spclinf.ethz.ch
ETHziirich

/..< R4S ¥ @spcl_eth

Ballooning: taking RAM away from a VM

Guest physical address space

Balloon
driver

2015-03-26

21

2015-03-26

ETHziirich

spcl.inf.ethz.ch
{ — spcl_eth
"/'\ y L W @spcl_

Ballooning: taking RAM away from a VM

1. VMM asks balloon driver
Guest physical address space for memory
2.
3.
4,
B

ETHziirich

spcl.inf.ethz.ch
{ — spcl_eth
"/'\ y L W @spcl_

Ballooning: taking RAM away from a VM

1. VMM asks balloon driver
Guest physical address space for memory
2. Balloon driver asks

Guest OS kernel for more
frames

] “inflates the balloon”

Balloon

Balloon
driver

22

2015-03-26

ETHziirich

spcl.inf.ethz.ch

A T ¥ @spcl_eth

Ballooning: taking RAM away from a VM

1. VMM asks balloon driver
for memory

2. Balloon driver asks
Guest OS kernel for more

Guest physical address space

frames
= “inflates the balloon”
3. Balloon driver sends
Physical Balloon physical frame numbers
memory to VMM

claimed by 4.
balloon driver

Balloon
driver

ETHziirich

spcl.inf.ethz.ch
/~< - ¥ @spcl_eth

Ballooning: taking RAM away from a VM

1. VMM asks balloon driver
for memory

2. Balloon driver asks
Guest OS kernel for more

Guest physical address space

frames
= “inflates the balloon”
3. Balloon driver sends
Physical Balloon physical frame numbers
memory to VMM

claimed by 4.

VMM translates into
balloon driver

machine addresses and
i claims the frames

23

. e spcl.inf.ethz.ch
ETHziirich o <

¥ @spcl_eth

Returning RAM to a VM

1. VMM converts machine
address into a physical
address previously
allocated by the balloon
driver

2. VMM hands PFN to
balloon driver
3. Balloon driver frees

physical frame back to
Guest OS kernel

B . “deflates the balloon”

Guest physical address space

Balloon
driver

. e spcl.inf.ethz.ch
ETHziirich o <

¥ @spcl_eth

Virtualizing Devices

= Familiar by now: trap-and-emulate

= 1/O space traps

= Protect memory and trap

= “Device model”: software model of device in VMM
= Interrupts — upcalls to Guest OS

= Emulate interrupt controller (APIC) in Guest

= Emulate DMA with copy into Guest PAS
= Significant performance overhead!

2015-03-26

24

2015-03-26

. gl spcl.inf.ethz.ch
ETHzirich -

/..< Y ¥ @spcl_eth

Paravirtualized devices

= “Fake” device drivers which communicate efficiently with VMM
via hypercalls

= Used for block devices like disk controllers
= Network interfaces

= “VMware tools” is mostly about these

= Dramatically better performance!

. gl spcl.inf.ethz.ch
ETHziirich -

/..< Y ¥ @spcl_eth

Networking

= Virtual network device in the Guest VM
= Hypervisor implements a “soft switch”
= Entire virtual IP/Ethernet network on a machine
= Many different addressing options
= Separate IP addresses
= Separate MAC addresses
= NAT
= Etc.

25

spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich

L

Where are the real drivers?

1. In the Hypervisor
= E.g. VMware ESX
= Problem: need to rewrite device drivers (new OS)
2. Inthe console OS
= Export virtual devices to other VMs
3. In “driver domains”
= Map hardware directly into a “trusted” VM
Device Passthrough
» Run your favorite OS just for the device driver
» Use IOMMU hardware to protect other memory from driver VM

4. Use “self-virtualizing devices”

spcl.inf.ethz.ch
¥ @spcl_eth

ETHziirich

XL

Xen 3.x Architecture

VMO VM1 VM2 VM3
Device Unmodified Unmodified | Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP Unmodified
(XenLinux) (XenLinux) GuestOS Gut_estOS
(XenLinux) (WinXP)
Native
Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers
\ -
A |
| Control IF || Safe HWIF || Event Channel || Virtual CPU || Virtual MMU |
Xen Virtual Machine Monitor

¥
| Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE) |

Thanks to Steve Hand for some of these diagrams

2015-03-26

26

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Xen 3.x Architecture

VMO VM1 VM2 VM3
Device Unmodified Unmodified |[] | Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP |[] | Unmodified
(XenLinux) (XenLinux) GuestOS Gut_estOS
(XenLinux) (WinXP)
Native
Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers
\ —
A |
| Control IF || Safe HWIF | [Event Channel || Virtual CPU || Virtual MMU |
Xen Virtual Machine Monitor

Y
| Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE) |

Thanks to Steve Hand for some of these diagrams

spcl.inf.ethz.ch

ETH_ziirich ; X~ W eselen

Xen 3.x Architecture

VMO VM1 VM2 VM3
Device Unmodified Unmodified ||| | Unmodified
Manager & User User User
Control s/w Software Software Software
GuestOS GuestOS SMP |[] | Unmodified
(XenLinux) (XenLinux) GuestOS Gut_estOS
Virtual switch (XenLinux) (WInXP)
Native
Device Front-End Front-End Front-End
Drivers Device Drivers Device Drivers Device Drivers
A A A A
; —— !
Y
| Control IF || Safe HWIF || Event Channel || Virtual CPU || Virtual MMU |
Xen Virtual Machine Monitor

¥
| Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE) |

Thanks to Steve Hand for some of these diagrams

2015-03-26

27

2015-03-26

e = spclinf.ethz.ch
ETHziirich /\'7’{‘9 N W @spol oth

Remember this card?

ETHiirich ' T U e
SR-IOV

= Single-Root I/O Virtualization

= Key idea: dynamically create new “PCle devices”
= Physical Function (PF): original device, full functionality
= Virtual Function (VF): extra “device”, limited funtionality
= VFs created/destroyed via PF registers

= For networking:
= Partitions a network card’s resources
= With direct assignment can implement passthrough

28

2015-03-26

spcl.inf.ethz.ch

ETHziirich ’/.,(Y - Y @spcl_eth

SR-IOV in action

| IOMMU
| PCle |

Physical function

| Virtual ethernet bridge/switch, packet classitier
SR-IOV NIC 4

spcl.inf.ethz.ch

ETHziirich ’/.,(Y - Y @spcl_eth

SR-IOV in action

VM
[vNIC drvr J|[|] PF driver
T
VMM — |

| IOMMU |
| PCle |

Physical function

| Virtual ethernet bridge/switch, packet classitier
SR-IOV NIC 4

29

ETHziirich

SR-IOV in action

spcl.inf.ethz.ch

/-.< {—- ¥ @spcl_eth

VM VM
X s |
| vNIC drvr ||| PF driver |
T

— |

|
| IOMMU
|

PCle |

Virtual
function

Physical function

‘ Wirtual ethernet bridge/switch, packet classitier

SR-IOV NIC

ETHziirich

SR-IOV in action

spcl.inf.ethz.ch
¥ @spcl_eth

L

VM VM VM
 voin
L_VF arver | | wNic drvr J|[|] PF driver |
T
VMM (— |
| IOMMU |
| PCle |
ﬂ\j/r;r(t::iln Physical function

‘ Wirtual ethernet bridge/switch, packet classitier

SR-IOV NIC

2015-03-26

30

2015-03-26

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

SR-IOV in action

VM VM VM VM
X s |
| VFdriver || || VF driver | | vNIC drvr ||| PF driver |
Y ¥
VMM — |
| IOMMU |
| PCle |
Virtual Virtual

Physical function

‘ function H function ‘
N

‘ Wirtual ethérmet bridge/switch, packet classitier
SR-IOV NIC 4

spcl.inf.ethz.ch

ETHziirich XL W Gspelen

SR-IOV in action

VM VM VM VM VM
T
| VFdriver || || VFdriver || || VF driver | | vNIC drvr ||| PF driver |
) ¥
VMM — |
| IOMMU |
| HCle |

Virtual Virtual Virtual
function function function
N

Physical function

‘ Wirtual ethéret bridge'/switch, packet classitier
SR-IOV NIC 4

31

e L g spclinf.ethz.ch
ETHziirich W @spel_eth

L
Self-virtualizing devices

= Can dynamically create up to 2048
distinct PCI devices on demand!
= Hypervisor can create a virtual NIC for each VM

= Softswitch driver programs “master” NIC to demux packets to each virtual
NIC

= PCI bus is virtualized in each VM

= Each Guest OS appears to have “real” NIC, talks direct to the real
hardware

e L g spclinf.ethz.ch
ETHziirich W @spel_eth

O

Next week

Reliable storage
OS Research/Future™

2015-03-26

32

