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BE CAREFUL WITH I/O DEVICES! 

Networks and Operating Systems (252-0062-00)   

Chapter 10: I/O Subsystems (2) 
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  True or false (raise hand) 

  Open files are part of the process’ address-space 

  Unified buffer caches improve the access times 

  A partition table can unify the view of multiple disks 

  Unix enables to bind arbitrary file systems to arbitrary locations 

  The virtual file system interface improves modularity of OS code 

  Programmed I/O is efficient for the CPUs 

  DMA enables devices to access virtual memory of processes 

  IOMMUs enable memory protection for devices 

  IOMMUs improve memory access performance 

  First level interrupt handlers process the whole request from the hardware 

  Software interrupts reduce the request processing latency 

  Deferred procedure calls execute second-level interrupt handlers 
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Our Small Quiz 
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The I/O subsystem 

spcl.inf.ethz.ch 

@spcl_eth 

Generic I/O functionality 

  Device drivers essentially move data to and from I/O devices 

  Abstract hardware 

  Manage asynchrony 

  OS I/O subsystem includes generic functions for dealing with 

this data 

  Such as… 
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The I/O Subsystem 

  Caching - fast memory holding copy of data 

  Always just a copy 

  Key to performance 

 

  Spooling - hold output for a device 

  If device can serve only one request at a time  

  E.g., printing 
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The I/O Subsystem 

  Scheduling 

  Some I/O request ordering via per-device queue 

  Some OSs try fairness 

 

  Buffering - store data in memory while transferring between 

devices or memory 

  To cope with device speed mismatch 

  To cope with device transfer size mismatch 

  To maintain “copy semantics” 
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Naming and Discovery 

  What are the devices the OS needs to manage? 

  Discovery (bus enumeration) 

  Hotplug / unplug events 

  Resource allocation (e.g., PCI BAR programming) 

  How to match driver code to devices? 

  Driver instance ≠ driver module 

  One driver typically manages many models of device 

  How to name devices inside the kernel? 

  How to name devices outside the kernel? 
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Matching drivers to devices 

  Devices have unique (model) identifiers 

  E.g., PCI vendor/device identifiers 

  Drivers recognize particular identifiers 

  Typically a list… 

  Kernel offers a device to each driver in turn 

  Driver can “claim” a device it can handle 

  Creates driver instance for it. 
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Naming devices in the Unix kernel 

(Actually, naming device driver instances) 

  Kernel creates identifiers for  

  Block devices 

  Character devices 

  [ Network devices – see later… ] 

  Major device number: 

  Class of device (e.g., disk, CD-ROM, keyboard) 

  Minor device number: 

  Specific device within a class 
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Unix Block Devices 

  Used for “structured I/O” 

  Deal in large “blocks” of data at a time 

  Often look like files (seekable, mappable) 

  Often use Unix’ shared buffer cache 

  Mountable: 

  File systems implemented above block devices 

spcl.inf.ethz.ch 

@spcl_eth 

Character Devices 

  Used for “unstructured I/O” 

  Byte-stream interface – no block boundaries 

  Single character or short strings get/put 

  Buffering implemented by libraries 

  Examples: 

  Keyboards, serial lines, mice 

  Distinction with block devices somewhat arbitrary… 
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Naming devices outside the kernel 

  Device files: special type of file 

  Inode encodes <type, major num, minor num> 

  Created with mknod() system call 

  Devices are traditionally put in /dev 

  /dev/sda – First SCSI/SATA/SAS disk 

  /dev/sda5 – Fifth partition on the above 

  /dev/cdrom0 – First DVD-ROM drive 

  /dev/ttyS1 – Second UART 
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Pseudo-devices in Unix 

  Devices with no hardware! 

  Still have major/minor device numbers. Examples: 

/dev/stdin 

/dev/kmem 

/dev/random 

/dev/null 

/dev/loop0 

etc. 
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Old-style Unix device configuration 

  All drivers compiled into the kernel 

  Each driver probes for any supported devices 

  System administrator populates /dev 

  Manually types mknod when a new device is purchased! 

  Pseudo devices similarly hard-wired in kernel 

spcl.inf.ethz.ch 

@spcl_eth 

Linux device configuration today 

  Physical hardware configuration readable from /sys 

  Special fake file system: sysfs 

  Plug events delivered by a special socket 

  Drivers dynamically loaded as kernel modules 

  Initial list given at boot time 

  User-space daemon can load more if required 

  /dev populated dynamically by udev 

  User-space daemon which polls /sys  
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Interface to network I/O 
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Unix interface to network I/O 

  You already know the data path 

  BSD sockets 

  bind(), listen(), accept(), connect(), send(), recv(), 

etc. 

  Have not yet seen: 

  Device driver interface 

  Configuration 

  Routing 
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Software routing 

  OS protocol stacks 

include routing 

functionality 

  Routing protocols 

typically in a user-space 

daemon 

  Non-critical 

  Easier to change 

  Forwarding information 

typically in kernel  

  Needs to be fast 

  Integrated into protocol stack 

User space 

Kernel space 

Routing daemon 

Routing 
protocol 

messages  

FIB (forwarding 
information base) 

Protocol stack 

Routing 
control 

Network 
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Network stack implementation 
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Networking stack 

  Probably most important peripheral 

  GPU is increasingly not a peripheral 

  Disk interfaces look increasingly like a network 

  But… 

  NO standard OS textbook talks about the network stack! 

  Good references: 

  The 4.4BSD book (for Unix at least)  

  George Varghese: “Network Algorithmics” (up to a point) 

spcl.inf.ethz.ch 

@spcl_eth 

Receiving a packet in BSD 

TCP UDP ICMP 

IP 

Network 

interface 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 
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Receiving a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

1.  Interrupt 
1.1 Allocate buffer 

1.2 Enqueue packet 
1.3 Post s/w interrupt 

Network 

interface 
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Receiving a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

2.  S/W Interrupt 
High priority 

Any process context 
Defragmentation 

TCP processing 

Enqueue on socket 

Network 

interface 
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Receiving a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

3.  Application 
Copy buffer to user 

space 
Application process 

context 

Network 

interface 
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Sending a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

Network 

interface 
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Sending a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

1.  Application 
Copy from user space to buffer 

Call TCP code and process 
Possible enqueue on socket 

queue 

Network 

interface 
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Sending a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

2.  S/W Interrupt 
Any process context 

Remaining TCP 
processing 

IP processing 

Enqueue on i/f queue 

Network 

interface 

spcl.inf.ethz.ch 

@spcl_eth 

Sending a packet in BSD 

TCP UDP ICMP 

IP 

Receive queue 

Datagram 
socket 

Stream 
socket 

Kernel 

 

Application 
 

Application 

3.  Interrupt 
Send packet 

Free buffer 

Network 

interface 
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The TCP state machine 

Closed 

SYN_rcvd 

Listen 

Established 

Closing 

Time_wait Closed 

Last_Ack 

Close_wait 

FIN_wait_2 

FIN_wait_1 

SYN_sent 

Active open / SYN 

Close 
Close Passive Open 

SYN / SYNACK 

SYNACK / ACK 

SYN / SYNACK Send / SYN 

ACK 

Close / FIN 

ACK 

FIN / ACK 

Close / FIN FIN / ACK 

Close / FIN 

ACK Timeout after 2 
segment lifetimes 

ACK 

FIN / ACK 
A
C
K
FIN

 / A
C
K
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OS TCP state machine 

  More complex!  Also needs to handle: 

  Congestion control state (window, slow start, etc.) 

  Flow control window 

  Retransmission timeouts 

  Etc. 

  State transitions triggered when: 

  User request: send, recv, connect, close 

  Packet arrives 

  Timer expires 

  Actions include: 

  Set or cancel a timer 

  Enqueue a packet on the transmit queue 

  Enqueue a packet on the socket receive queue 

  Create or destroy a TCP control block 
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In-kernel protocol graph 

Ethernet device 

Ethernet 

TCP UDP 

ARP 

ICMP 

IP 

Interfaces can be 
standard (e.g. X-

kernel, Windows) or 
protocol-specific (e.g. 

Unix) 

e.g. 
Tunneling 
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Protocol graphs 

Graph nodes can be: 

  Per-protocol (handle all flows) 

  Packets are “tagged” with demux tags 

  Per-connection (instantiated dynamically) 

  Multiple interfaces as well as connections 

  Ethernet ↔ Ethernet ⇒ bridging 

  IP ↔ IP ⇒ IP routing 
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Memory management 
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Memory management 

  Problem: how to ship packet data around 

  Need a data structure that can: 

  Easily add, remove headers 

  Avoid copying lots of payload 

  Uniformly refer to half-defined packets 

  Fragment large datasets into smaller units 

  Solution:  

  Data is held in a linked list of “buffer structures” 
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BSD Unix mbufs (Linux equivalent: sk_buffs) 

next 

offset 

length 

type 

Data 
(112 bytes) 

next object 
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BSD Unix mbufs (Linux equivalent: sk_buffs) 

next 

offset 

length 

type 

Data 
(112 bytes) 

next object 

36 

24 

Type: DATA 

24 bytes 

36 
bytes 

Next mbuf 
for this 

object 

Next object 
in a list 
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Case Study: Linux 3.x  

•  Implementing a simple protocol over Ethernet 

•  Why? 

  You want to play with networking equipment (well, RAW sockets 
are easier) 

  You want to develop specialized protocols 

E.g., application-specific “TCP” 

E.g., for low-latency cluster computing 

  You’ll understand how it works! 
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Sending Data in Linux 3.x  

•  Many layers 

•  Most use the sk_buf struct 

tcp_send_msg 

tcp_transmit_skb 

ip_queue_xmit 

char* 

struct sk_buff 

struct sk_buff, 
TCP Header 

Socket 

ip_fragment 

ip_route_output_flow 

ip_forward 
dev_queue_xmit 

Driver 
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•  Fill packet_type struct: 

  .type = your ethertype 

  .func = your receive function 

•  Receive handler recv_hook(...) 

  Gets sk_buff, packet_type, net_device, ... 

  Called for each incoming frame 

  Reads skb->data field and processes protocols 

Register a receive hook 

0x0800  

0x8864 

0x8915 

… 

IPv4 hdlr. 

PPPOE hdlr. 

RoCE hdlr. 

Receive hook table: 
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  Socket Interface 

  Need to implement handlers for connect(), bind(), listen(), etc. 

  Call sock_register(struct net_proto_family*) 

  Register a protocol family 

  Enables user to create socket of this type 

Interaction with applications 

spcl.inf.ethz.ch 

@spcl_eth 

  Called “skb” in Linux jargon 

  Allocate via alloc_skb() (or dev_alloc_skb() if in driver) 

  Free with kfree_skb() (dev_kfree_skb()) 

  Use pskb_may_pull(skb, len) to check if data is available 

  skb_pull(skb, len) to advance the data pointer 

... it even has a webpage! http://www.skbuff.net/ 

Anatomy of struct sk_buff 
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  Double-linked list, each skb has .next/.prev 

  .data contains payload (size of data field is set by skb_alloc) 

  .sk is the socket this skb is owned by 

  .mac_header, .network_header, .transport_header contain headers of 
various layers 

  .dev is the device this skb uses 

  ... 58 member fields total 

SKB Fields 
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  Linux <2.0.32: 

  Two fragments: 

  #1 

Offset: 0 

Length: 100 

  #2 

Offset 100 

Length: 100 

Case Study: TCP Fragmenting 

// Determine the position of this fragment. 

end = offset + iph->tot_len - ihl; 

// Check for overlap with preceding fragment, and, if needed, 

// align things so that any overlaps are eliminated. 

if (prev != NULL && offset < prev->end) { 

  i = prev->end - offset; 

  offset += i;    /* ptr into datagram */ 

  ptr += i;       /* ptr into fragment data */ 

}  

// initialize segment structure 

fp->offset = offset;  

fp->end = end; 

fp->len = end - offset; 

.... // collect multiple such fragments in queue 

// process each fragment 

if(count+fp->len > skb->len)  { 

  error_to_big; 

}                  

memcpy((ptr + fp->offset), fp->ptr, fp->len); 

count += fp->len; 

fp = fp->next; 

#1: 100, #2: 200 

#1: 100, #2: 100 

#1: 100, #2: 200 

#1: 0, #2: 100 
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// Determine the position of this fragment. 

end = offset + iph->tot_len - ihl; 

// Check for overlap with preceding fragment, and, if needed, 

// align things so that any overlaps are eliminated. 

if (prev != NULL && offset < prev->end) { 

  i = prev->end - offset; 

  offset += i;    /* ptr into datagram */ 

  ptr += i;       /* ptr into fragment data */ 

}  

// initialize segment structure 

fp->offset = offset;  

fp->end = end; 

fp->len = end - offset; 

.... // collect multiple such fragments in queue 

// process each fragment 

if(count+fp->len > skb->len)  { 

  error_to_big; 

}                  

memcpy((ptr + fp->offset), fp->ptr, fp->len); 

count += fp->len; 

fp = fp->next; 

Case Study: TCP Fragmenting 

  Linux <2.0.32: 

  Two fragments: 

  #1 

Offset: 0 

Length: 100 

  #2 

Offset 10 

Length: 20 

#1: 100, #2: 30 

#2: 100-10=90 

#1: 100, #2: -70 

#1: 100, #2: 30 

#1: 0, #2: 100 

(size_t)-70 = 4294967226 

#2: 100 
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Case Study: TCP Fragmenting 

  Linux <2.0.32: 

  Two fragments: 

  #1 

Offset: 0 

Length: 100 

  #2 

Offset 10 

Length: 20 

// Determine the position of this fragment. 

end = offset + iph->tot_len - ihl; 

// Check for overlap with preceding fragment, and, if needed, 

// align things so that any overlaps are eliminated. 

if (prev != NULL && offset < prev->end) { 

  i = prev->end - offset; 

  offset += i;    /* ptr into datagram */ 

  ptr += i;       /* ptr into fragment data */ 

}  

// initialize segment structure 

fp->offset = offset;  

fp->end = end; 

fp->len = end - offset; 

.... // collect multiple such fragments in queue 

// process each fragment 

if(count+fp->len > skb->len)  { 

  error_to_big; 

}                  

memcpy((ptr + fp->offset), fp->ptr, fp->len); 

count += fp->len; 

fp = fp->next; 

#1: 100, #2: 30 

#2: 100-10=90 

#1: 100, #2: -70 

#1: 100, #2: 30 

#1: 0, #2: 100 

(size_t)-70 = 4294967226 

#2: 100 
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2.0.32 … that’s so last century! 
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Performance issues 
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Life Cycle of an I/O Request 

•  Send request to driver 
•  Block process if needed 

•  Request I/O 

•  Issue commands to 
device 

•  Block until interrupted 

•  Issue interrupt when I/O 
completed 

Time 

•  I/O complete 

•  Transfer data to/from user 
space,  

•  Return completion code 

•  Demultiplex I/O complete 
•  Determine source of 

request 

•  Handle interrupt 
•  Signal device driver 

•  I/O complete 
•  Generate Interrupt 

Can satisfy  

request? 

User process 

I/O subsystem 

Device driver 

Interrupt handler 

Physical device 

Interrupt 

Return from system call System call 

Yes 

No 

Unfortunately, th
is  

is a bit of a  

convenient fiction 
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Consider 10 Gb/s Ethernet 
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At full line rate for 1 x 10Gb port 

  ~1GB (gigabyte) per second 

⇒  ~ 700k full-size Ethernet frames per second 

⇒  At 2GHz, must process a packet in ≤ 3000 cycles 

  This includes: 

  IP and TCP checksums 

  TCP window calculations and flow control 

  Copying packet to user space 
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  L3 cache miss (64-byte lines) ≈ 300 cycles 

⇒  At most 10 cache misses per packet 
Note: DMA ensures cache is cold for the packet! 

  Interrupt latency ≈ 500 cycles 

  Kernel entry/exit 

  Hardware access 

  Context switch / DPC 

  Etc.  

A few numbers… 
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Plus… 

  You also have to send packets. 

  Card is full duplex ⇒ can send at 10Gb/s 

  You have to do something useful with the packets! 

  Can an application can make use of 1.5kB of data every 1000 machine 

cycles or so? 

  This card has two 10Gb/s ports.  
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And Plus … 

  And if you thought that  

was fast … 

  Mellanox 100 Gb/s Adapter 

  Impossible to use without 

advanced features 

RDMA 

SR-IOV  

TOE 

Interrupt coalescing 
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  TCP offload (TOE) 

  Put TCP processing into hardware on the card 

  Buffering 

  Transfer lots of packets in a single transaction 

  Interrupt coalescing / throttling 

  Don’t interrupt on every packet 

  Don’t interrupt at all if load is very high 

  Receive-side scaling 

  Parallelize: direct interrupts and data to different cores 

What to do? 
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  Mitigate interrupt pressure 

1.  Each packet interrupts the CPU  

2.  Vs. CPU polls driver 

  NAPI switches between the two! 

  NAPI-compliant drivers  

  Offer a poll() function 

  Which calls back into the receive path … 

Linux New API (NAPI) 
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  Driver enables polling with netif_rx_schedule(struct net_device 

*dev) 

  Disables interrupts 

  Driver deactivates polling with netif_rx_complete(struct 

net_device *dev)  

  Re-enable interrupts. 

  ! but where does the data go??? 

Linux NAPI Balancing 
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Key ideas: 

  Decouple sending and receiving 

  Neither side should wait for the other 

  Only use interrupts to unblock host 

  Batch together requests 

  Spread cost of transfer over several packets 

Buffering 
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Consumer 

pointer 

Producer-consumer buffer descriptor rings 

Producer 

pointer 

Free descriptors 

Full descriptors 

Physical address 

Size in bytes 

Misc. flags 

Descriptor format 
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Buffering for network cards 

Producer, consumer pointers are NIC registers 

  Transmit path: 

  Host updates producer pointer,  
adds packets to ring 

  Device updates consumer pointer 

  Receive path: 

  Host updates consumer pointer,  

adds empty buffers to ring 

  Device updates producer pointer,  
fills buffers with received packets. 

More complex protocols are possible… 
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Example transmit state machine 

Running Idle 

Sends last packet; 
None left in  
descriptor ring 

Host updates  
producer pointer 

Sends packet; 
More packets in 
descriptor ring 

Running;  
host blocked 

Host updates  
producer pointer; 
Ring now full 

Sends packet;  
Ring occupancy 
below threshold 

Sends packet; 
Ring still nearly full 
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Transmit interrupts 

  Ring empty 
⇒ all packets sent 

⇒ device going idle 

  Ring occupancy drops 

⇒ host can now send again 

⇒ device continues running 

Running Idle 

Sends last packet; 
None left in  
descriptor ring 

Host updates  
producer pointer 

Sends packet; 
More packets in 
descriptor ring 

Running;  

host blocked 

Host updates  
producer pointer; 
Ring now full 

Sends packet;  
Ring occupancy 
below threshold 

Sends packet; 
Ring still nearly full 

Exercise: devise a 
similar state machine 

for receive! 

spcl.inf.ethz.ch 

@spcl_eth 

Buffering summary 

  DMA used twice 

   Data transfer 

   Reading and writing descriptors 

  Similar schemes used for any fast DMA device 

  SATA/SAS interfaces (such as AHCI) 

  USB2/USB3 controllers 

  etc. 

  Descriptors send ownership of memory regions 

  Flexible – many variations possible: 

  Host can send lots of regions in advance 

  Device might allocate out of regions, send back subsets 

  Buffers might be used out-of-order 

  Particularly powerful with multiple send and receive queues… 
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Receive-side scaling 

  Insight: 

  Too much traffic for one core to handle 

  Cores aren’t getting any faster 

⇒ Must parallelize across cores 

  Key idea: handle different flows on different cores 

  But: how to determine flow for each packet? 

  Can’t do this on a core: same problem! 

  Solution: demultiplex on the NIC 

  DMA packets to per-flow buffers / queues 

  Send interrupt only to core handling flow 
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Receive-side scaling 

Received 
packet 

Hash of 
packet 

header 

pointer 

Flow state: 
•  Ring buffer 

•  Message-signalled interrupt 

Flow table 

• IP src + dest 
• TCP src + dest 

Etc. 

DMA  
address 

Core to  
interrupt 
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Receive-side scaling 

  Can balance flows across cores 

  Note: doesn’t help with one big flow! 

  Assumes: 

  n cores processing m flows is faster than one core 

  Hence:  

  Network stack and protocol graph must scale on a multiprocessor. 

  Multiprocessor scaling: topic for later 
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Tomorrow 

  Virtual machines 

  Multiprocessor operating systems 


