
2015‐03‐25

1

spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

BE CAREFUL WITH I/O DEVICES!

Networks and Operating Systems (252-0062-00)

Chapter 10: I/O Subsystems (2)

spcl.inf.ethz.ch

@spcl_eth

  True or false (raise hand)

  Open files are part of the process’ address-space

  Unified buffer caches improve the access times

  A partition table can unify the view of multiple disks

  Unix enables to bind arbitrary file systems to arbitrary locations

  The virtual file system interface improves modularity of OS code

  Programmed I/O is efficient for the CPUs

  DMA enables devices to access virtual memory of processes

  IOMMUs enable memory protection for devices

  IOMMUs improve memory access performance

  First level interrupt handlers process the whole request from the hardware

  Software interrupts reduce the request processing latency

  Deferred procedure calls execute second-level interrupt handlers

2

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

The I/O subsystem

spcl.inf.ethz.ch

@spcl_eth

Generic I/O functionality

  Device drivers essentially move data to and from I/O devices

  Abstract hardware

  Manage asynchrony

  OS I/O subsystem includes generic functions for dealing with

this data

  Such as…

spcl.inf.ethz.ch

@spcl_eth

The I/O Subsystem

  Caching - fast memory holding copy of data

  Always just a copy

  Key to performance

  Spooling - hold output for a device

  If device can serve only one request at a time

  E.g., printing

spcl.inf.ethz.ch

@spcl_eth

The I/O Subsystem

  Scheduling

  Some I/O request ordering via per-device queue

  Some OSs try fairness

  Buffering - store data in memory while transferring between

devices or memory

  To cope with device speed mismatch

  To cope with device transfer size mismatch

  To maintain “copy semantics”

2015‐03‐25

2

spcl.inf.ethz.ch

@spcl_eth

Naming and Discovery

  What are the devices the OS needs to manage?

  Discovery (bus enumeration)

  Hotplug / unplug events

  Resource allocation (e.g., PCI BAR programming)

  How to match driver code to devices?

  Driver instance ≠ driver module

  One driver typically manages many models of device

  How to name devices inside the kernel?

  How to name devices outside the kernel?

spcl.inf.ethz.ch

@spcl_eth

Matching drivers to devices

  Devices have unique (model) identifiers

  E.g., PCI vendor/device identifiers

  Drivers recognize particular identifiers

  Typically a list…

  Kernel offers a device to each driver in turn

  Driver can “claim” a device it can handle

  Creates driver instance for it.

spcl.inf.ethz.ch

@spcl_eth

Naming devices in the Unix kernel

(Actually, naming device driver instances)

  Kernel creates identifiers for

  Block devices

  Character devices

  [Network devices – see later…]

  Major device number:

  Class of device (e.g., disk, CD-ROM, keyboard)

  Minor device number:

  Specific device within a class

spcl.inf.ethz.ch

@spcl_eth

Unix Block Devices

  Used for “structured I/O”

  Deal in large “blocks” of data at a time

  Often look like files (seekable, mappable)

  Often use Unix’ shared buffer cache

  Mountable:

  File systems implemented above block devices

spcl.inf.ethz.ch

@spcl_eth

Character Devices

  Used for “unstructured I/O”

  Byte-stream interface – no block boundaries

  Single character or short strings get/put

  Buffering implemented by libraries

  Examples:

  Keyboards, serial lines, mice

  Distinction with block devices somewhat arbitrary…

spcl.inf.ethz.ch

@spcl_eth

Naming devices outside the kernel

  Device files: special type of file

  Inode encodes <type, major num, minor num>

  Created with mknod() system call

  Devices are traditionally put in /dev

  /dev/sda – First SCSI/SATA/SAS disk

  /dev/sda5 – Fifth partition on the above

  /dev/cdrom0 – First DVD-ROM drive

  /dev/ttyS1 – Second UART

2015‐03‐25

3

spcl.inf.ethz.ch

@spcl_eth

Pseudo-devices in Unix

  Devices with no hardware!

  Still have major/minor device numbers. Examples:

/dev/stdin

/dev/kmem

/dev/random

/dev/null

/dev/loop0

etc.

spcl.inf.ethz.ch

@spcl_eth

Old-style Unix device configuration

  All drivers compiled into the kernel

  Each driver probes for any supported devices

  System administrator populates /dev

  Manually types mknod when a new device is purchased!

  Pseudo devices similarly hard-wired in kernel

spcl.inf.ethz.ch

@spcl_eth

Linux device configuration today

  Physical hardware configuration readable from /sys

  Special fake file system: sysfs

  Plug events delivered by a special socket

  Drivers dynamically loaded as kernel modules

  Initial list given at boot time

  User-space daemon can load more if required

  /dev populated dynamically by udev

  User-space daemon which polls /sys

spcl.inf.ethz.ch

@spcl_eth

Interface to network I/O

spcl.inf.ethz.ch

@spcl_eth

Unix interface to network I/O

  You already know the data path

  BSD sockets

  bind(), listen(), accept(), connect(), send(), recv(),

etc.

  Have not yet seen:

  Device driver interface

  Configuration

  Routing

spcl.inf.ethz.ch

@spcl_eth

Software routing

  OS protocol stacks

include routing

functionality

  Routing protocols

typically in a user-space

daemon

  Non-critical

  Easier to change

  Forwarding information

typically in kernel

  Needs to be fast

  Integrated into protocol stack

User space

Kernel space

Routing daemon

Routing
protocol

messages

FIB (forwarding
information base)

Protocol stack

Routing
control

Network

2015‐03‐25

4

spcl.inf.ethz.ch

@spcl_eth

Network stack implementation

spcl.inf.ethz.ch

@spcl_eth

Networking stack

  Probably most important peripheral

  GPU is increasingly not a peripheral

  Disk interfaces look increasingly like a network

  But…

  NO standard OS textbook talks about the network stack!

  Good references:

  The 4.4BSD book (for Unix at least)

  George Varghese: “Network Algorithmics” (up to a point)

spcl.inf.ethz.ch

@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Network

interface

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

spcl.inf.ethz.ch

@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

1.  Interrupt
1.1 Allocate buffer

1.2 Enqueue packet
1.3 Post s/w interrupt

Network

interface

spcl.inf.ethz.ch

@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

2.  S/W Interrupt
High priority

Any process context
Defragmentation

TCP processing

Enqueue on socket

Network

interface

spcl.inf.ethz.ch

@spcl_eth

Receiving a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

3.  Application
Copy buffer to user

space
Application process

context

Network

interface

2015‐03‐25

5

spcl.inf.ethz.ch

@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

Network

interface

spcl.inf.ethz.ch

@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

1.  Application
Copy from user space to buffer

Call TCP code and process
Possible enqueue on socket

queue

Network

interface

spcl.inf.ethz.ch

@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

2.  S/W Interrupt
Any process context

Remaining TCP
processing

IP processing

Enqueue on i/f queue

Network

interface

spcl.inf.ethz.ch

@spcl_eth

Sending a packet in BSD

TCP UDP ICMP

IP

Receive queue

Datagram
socket

Stream
socket

Kernel

Application

Application

3.  Interrupt
Send packet

Free buffer

Network

interface

spcl.inf.ethz.ch

@spcl_eth

The TCP state machine

Closed

SYN_rcvd

Listen

Established

Closing

Time_wait Closed

Last_Ack

Close_wait

FIN_wait_2

FIN_wait_1

SYN_sent

Active open / SYN

Close
Close Passive Open

SYN / SYNACK

SYNACK / ACK

SYN / SYNACK Send / SYN

ACK

Close / FIN

ACK

FIN / ACK

Close / FIN FIN / ACK

Close / FIN

ACK Timeout after 2
segment lifetimes

ACK

FIN / ACK
A
C
K
FIN

 / A
C
K

spcl.inf.ethz.ch

@spcl_eth

OS TCP state machine

  More complex! Also needs to handle:

  Congestion control state (window, slow start, etc.)

  Flow control window

  Retransmission timeouts

  Etc.

  State transitions triggered when:

  User request: send, recv, connect, close

  Packet arrives

  Timer expires

  Actions include:

  Set or cancel a timer

  Enqueue a packet on the transmit queue

  Enqueue a packet on the socket receive queue

  Create or destroy a TCP control block

2015‐03‐25

6

spcl.inf.ethz.ch

@spcl_eth

In-kernel protocol graph

Ethernet device

Ethernet

TCP UDP

ARP

ICMP

IP

Interfaces can be
standard (e.g. X-

kernel, Windows) or
protocol-specific (e.g.

Unix)

e.g.
Tunneling

spcl.inf.ethz.ch

@spcl_eth

Protocol graphs

Graph nodes can be:

  Per-protocol (handle all flows)

  Packets are “tagged” with demux tags

  Per-connection (instantiated dynamically)

  Multiple interfaces as well as connections

  Ethernet ↔ Ethernet ⇒ bridging

  IP ↔ IP ⇒ IP routing

spcl.inf.ethz.ch

@spcl_eth

Memory management

spcl.inf.ethz.ch

@spcl_eth

Memory management

  Problem: how to ship packet data around

  Need a data structure that can:

  Easily add, remove headers

  Avoid copying lots of payload

  Uniformly refer to half-defined packets

  Fragment large datasets into smaller units

  Solution:

  Data is held in a linked list of “buffer structures”

spcl.inf.ethz.ch

@spcl_eth

BSD Unix mbufs (Linux equivalent: sk_buffs)

next

offset

length

type

Data
(112 bytes)

next object

spcl.inf.ethz.ch

@spcl_eth

BSD Unix mbufs (Linux equivalent: sk_buffs)

next

offset

length

type

Data
(112 bytes)

next object

36

24

Type: DATA

24 bytes

36
bytes

Next mbuf
for this

object

Next object
in a list

2015‐03‐25

7

spcl.inf.ethz.ch

@spcl_eth

Case Study: Linux 3.x

•  Implementing a simple protocol over Ethernet

•  Why?

  You want to play with networking equipment (well, RAW sockets
are easier)

  You want to develop specialized protocols

E.g., application-specific “TCP”

E.g., for low-latency cluster computing

  You’ll understand how it works!

spcl.inf.ethz.ch

@spcl_eth

Sending Data in Linux 3.x

•  Many layers

•  Most use the sk_buf struct

tcp_send_msg

tcp_transmit_skb

ip_queue_xmit

char*

struct sk_buff

struct sk_buff,
TCP Header

Socket

ip_fragment

ip_route_output_flow

ip_forward
dev_queue_xmit

Driver

spcl.inf.ethz.ch

@spcl_eth

•  Fill packet_type struct:

  .type = your ethertype

  .func = your receive function

•  Receive handler recv_hook(...)

  Gets sk_buff, packet_type, net_device, ...

  Called for each incoming frame

  Reads skb->data field and processes protocols

Register a receive hook

0x0800

0x8864

0x8915

…

IPv4 hdlr.

PPPOE hdlr.

RoCE hdlr.

Receive hook table:

spcl.inf.ethz.ch

@spcl_eth

  Socket Interface

  Need to implement handlers for connect(), bind(), listen(), etc.

  Call sock_register(struct net_proto_family*)

  Register a protocol family

  Enables user to create socket of this type

Interaction with applications

spcl.inf.ethz.ch

@spcl_eth

  Called “skb” in Linux jargon

  Allocate via alloc_skb() (or dev_alloc_skb() if in driver)

  Free with kfree_skb() (dev_kfree_skb())

  Use pskb_may_pull(skb, len) to check if data is available

  skb_pull(skb, len) to advance the data pointer

... it even has a webpage! http://www.skbuff.net/

Anatomy of struct sk_buff

spcl.inf.ethz.ch

@spcl_eth

  Double-linked list, each skb has .next/.prev

  .data contains payload (size of data field is set by skb_alloc)

  .sk is the socket this skb is owned by

  .mac_header, .network_header, .transport_header contain headers of
various layers

  .dev is the device this skb uses

  ... 58 member fields total

SKB Fields

2015‐03‐25

8

spcl.inf.ethz.ch

@spcl_eth

  Linux <2.0.32:

  Two fragments:

  #1

Offset: 0

Length: 100

  #2

Offset 100

Length: 100

Case Study: TCP Fragmenting

// Determine the position of this fragment.

end = offset + iph->tot_len - ihl;

// Check for overlap with preceding fragment, and, if needed,

// align things so that any overlaps are eliminated.

if (prev != NULL && offset < prev->end) {

 i = prev->end - offset;

 offset += i; /* ptr into datagram */

 ptr += i; /* ptr into fragment data */

}

// initialize segment structure

fp->offset = offset;

fp->end = end;

fp->len = end - offset;

.... // collect multiple such fragments in queue

// process each fragment

if(count+fp->len > skb->len) {

 error_to_big;

}

memcpy((ptr + fp->offset), fp->ptr, fp->len);

count += fp->len;

fp = fp->next;

#1: 100, #2: 200

#1: 100, #2: 100

#1: 100, #2: 200

#1: 0, #2: 100

spcl.inf.ethz.ch

@spcl_eth

// Determine the position of this fragment.

end = offset + iph->tot_len - ihl;

// Check for overlap with preceding fragment, and, if needed,

// align things so that any overlaps are eliminated.

if (prev != NULL && offset < prev->end) {

 i = prev->end - offset;

 offset += i; /* ptr into datagram */

 ptr += i; /* ptr into fragment data */

}

// initialize segment structure

fp->offset = offset;

fp->end = end;

fp->len = end - offset;

.... // collect multiple such fragments in queue

// process each fragment

if(count+fp->len > skb->len) {

 error_to_big;

}

memcpy((ptr + fp->offset), fp->ptr, fp->len);

count += fp->len;

fp = fp->next;

Case Study: TCP Fragmenting

  Linux <2.0.32:

  Two fragments:

  #1

Offset: 0

Length: 100

  #2

Offset 10

Length: 20

#1: 100, #2: 30

#2: 100-10=90

#1: 100, #2: -70

#1: 100, #2: 30

#1: 0, #2: 100

(size_t)-70 = 4294967226

#2: 100

spcl.inf.ethz.ch

@spcl_eth

Case Study: TCP Fragmenting

  Linux <2.0.32:

  Two fragments:

  #1

Offset: 0

Length: 100

  #2

Offset 10

Length: 20

// Determine the position of this fragment.

end = offset + iph->tot_len - ihl;

// Check for overlap with preceding fragment, and, if needed,

// align things so that any overlaps are eliminated.

if (prev != NULL && offset < prev->end) {

 i = prev->end - offset;

 offset += i; /* ptr into datagram */

 ptr += i; /* ptr into fragment data */

}

// initialize segment structure

fp->offset = offset;

fp->end = end;

fp->len = end - offset;

.... // collect multiple such fragments in queue

// process each fragment

if(count+fp->len > skb->len) {

 error_to_big;

}

memcpy((ptr + fp->offset), fp->ptr, fp->len);

count += fp->len;

fp = fp->next;

#1: 100, #2: 30

#2: 100-10=90

#1: 100, #2: -70

#1: 100, #2: 30

#1: 0, #2: 100

(size_t)-70 = 4294967226

#2: 100

spcl.inf.ethz.ch

@spcl_eth

2.0.32 … that’s so last century!

spcl.inf.ethz.ch

@spcl_eth

Performance issues

spcl.inf.ethz.ch

@spcl_eth

Life Cycle of an I/O Request

•  Send request to driver
•  Block process if needed

•  Request I/O

•  Issue commands to
device

•  Block until interrupted

•  Issue interrupt when I/O
completed

Time

•  I/O complete

•  Transfer data to/from user
space,

•  Return completion code

•  Demultiplex I/O complete
•  Determine source of

request

•  Handle interrupt
•  Signal device driver

•  I/O complete
•  Generate Interrupt

Can satisfy

request?

User process

I/O subsystem

Device driver

Interrupt handler

Physical device

Interrupt

Return from system call System call

Yes

No

Unfortunately, th
is

is a bit of a

convenient fiction

2015‐03‐25

9

spcl.inf.ethz.ch

@spcl_eth

Consider 10 Gb/s Ethernet

spcl.inf.ethz.ch

@spcl_eth

At full line rate for 1 x 10Gb port

  ~1GB (gigabyte) per second

⇒  ~ 700k full-size Ethernet frames per second

⇒  At 2GHz, must process a packet in ≤ 3000 cycles

  This includes:

  IP and TCP checksums

  TCP window calculations and flow control

  Copying packet to user space

spcl.inf.ethz.ch

@spcl_eth

  L3 cache miss (64-byte lines) ≈ 300 cycles

⇒  At most 10 cache misses per packet
Note: DMA ensures cache is cold for the packet!

  Interrupt latency ≈ 500 cycles

  Kernel entry/exit

  Hardware access

  Context switch / DPC

  Etc.

A few numbers…

spcl.inf.ethz.ch

@spcl_eth

Plus…

  You also have to send packets.

  Card is full duplex ⇒ can send at 10Gb/s

  You have to do something useful with the packets!

  Can an application can make use of 1.5kB of data every 1000 machine

cycles or so?

  This card has two 10Gb/s ports.

spcl.inf.ethz.ch

@spcl_eth

And Plus …

  And if you thought that

was fast …

  Mellanox 100 Gb/s Adapter

  Impossible to use without

advanced features

RDMA

SR-IOV

TOE

Interrupt coalescing

spcl.inf.ethz.ch

@spcl_eth

  TCP offload (TOE)

  Put TCP processing into hardware on the card

  Buffering

  Transfer lots of packets in a single transaction

  Interrupt coalescing / throttling

  Don’t interrupt on every packet

  Don’t interrupt at all if load is very high

  Receive-side scaling

  Parallelize: direct interrupts and data to different cores

What to do?

2015‐03‐25

10

spcl.inf.ethz.ch

@spcl_eth

  Mitigate interrupt pressure

1.  Each packet interrupts the CPU

2.  Vs. CPU polls driver

  NAPI switches between the two!

  NAPI-compliant drivers

  Offer a poll() function

  Which calls back into the receive path …

Linux New API (NAPI)

spcl.inf.ethz.ch

@spcl_eth

  Driver enables polling with netif_rx_schedule(struct net_device

*dev)

  Disables interrupts

  Driver deactivates polling with netif_rx_complete(struct

net_device *dev)

  Re-enable interrupts.

  ! but where does the data go???

Linux NAPI Balancing

spcl.inf.ethz.ch

@spcl_eth

Key ideas:

  Decouple sending and receiving

  Neither side should wait for the other

  Only use interrupts to unblock host

  Batch together requests

  Spread cost of transfer over several packets

Buffering

spcl.inf.ethz.ch

@spcl_eth

Consumer

pointer

Producer-consumer buffer descriptor rings

Producer

pointer

Free descriptors

Full descriptors

Physical address

Size in bytes

Misc. flags

Descriptor format

spcl.inf.ethz.ch

@spcl_eth

Buffering for network cards

Producer, consumer pointers are NIC registers

  Transmit path:

  Host updates producer pointer,
adds packets to ring

  Device updates consumer pointer

  Receive path:

  Host updates consumer pointer,

adds empty buffers to ring

  Device updates producer pointer,
fills buffers with received packets.

More complex protocols are possible…

spcl.inf.ethz.ch

@spcl_eth

Example transmit state machine

Running Idle

Sends last packet;
None left in
descriptor ring

Host updates
producer pointer

Sends packet;
More packets in
descriptor ring

Running;
host blocked

Host updates
producer pointer;
Ring now full

Sends packet;
Ring occupancy
below threshold

Sends packet;
Ring still nearly full

2015‐03‐25

11

spcl.inf.ethz.ch

@spcl_eth

Transmit interrupts

  Ring empty
⇒ all packets sent

⇒ device going idle

  Ring occupancy drops

⇒ host can now send again

⇒ device continues running

Running Idle

Sends last packet;
None left in
descriptor ring

Host updates
producer pointer

Sends packet;
More packets in
descriptor ring

Running;

host blocked

Host updates
producer pointer;
Ring now full

Sends packet;
Ring occupancy
below threshold

Sends packet;
Ring still nearly full

Exercise: devise a
similar state machine

for receive!

spcl.inf.ethz.ch

@spcl_eth

Buffering summary

  DMA used twice

  Data transfer

  Reading and writing descriptors

  Similar schemes used for any fast DMA device

  SATA/SAS interfaces (such as AHCI)

  USB2/USB3 controllers

  etc.

  Descriptors send ownership of memory regions

  Flexible – many variations possible:

  Host can send lots of regions in advance

  Device might allocate out of regions, send back subsets

  Buffers might be used out-of-order

  Particularly powerful with multiple send and receive queues…

spcl.inf.ethz.ch

@spcl_eth

Receive-side scaling

  Insight:

  Too much traffic for one core to handle

  Cores aren’t getting any faster

⇒ Must parallelize across cores

  Key idea: handle different flows on different cores

  But: how to determine flow for each packet?

  Can’t do this on a core: same problem!

  Solution: demultiplex on the NIC

  DMA packets to per-flow buffers / queues

  Send interrupt only to core handling flow

spcl.inf.ethz.ch

@spcl_eth

Receive-side scaling

Received
packet

Hash of
packet

header

pointer

Flow state:
•  Ring buffer

•  Message-signalled interrupt

Flow table

• IP src + dest
• TCP src + dest

Etc.

DMA
address

Core to
interrupt

spcl.inf.ethz.ch

@spcl_eth

Receive-side scaling

  Can balance flows across cores

  Note: doesn’t help with one big flow!

  Assumes:

  n cores processing m flows is faster than one core

  Hence:

  Network stack and protocol graph must scale on a multiprocessor.

  Multiprocessor scaling: topic for later

spcl.inf.ethz.ch

@spcl_eth

Tomorrow

  Virtual machines

  Multiprocessor operating systems

