4/22/15

Operating Systems and Networks

Network Lecture 3: Link Layer (1)

Adrian Perrig

Network Security Group
ETH Zirich

Pending Issues

Earlier posting of lecture slides

Answering student questions

Project 1 is out

Exercise sessions starting today




4/22/15

Where we are in the Course

* Moving on to the Link Layer!

Application

Transport

Network
Link
Physical

Scope of the Link Layer

* Concerns how to transfer messages over one or more
connected links
— Messages are frames, of limited size
— Builds on the physical layer

]




4/22/15

Network

In terms of layers ...

Sending machine

Receiving machine

Packet Packet
1 A
v
Link
Physical L Actual data path J
Sending machine Receiving machine
Network Packet Packet
Frame
Link Header | Payload field Trailer Header | Payload field Trailer
Virtual data path
! I
Physical L Actual data path J




4/22/15

Typical Implementation of Layers

Application

«—— Computer

: 4+— Operating System
Network
Driver
Link
. Network Interface
M ——— T card (NIQ)
PHY
~— Cable (medium)

=

™

4.

v

Topics

Framing

— Delimiting start/end of frames
Error detection and correction
— Handling errors

Retransmissions

— Handling loss

Multiple Access

— 802.11, classic Ethernet Later
Switching

— Modern Ethernet




4/22/15

Framing (§3.1.2)

e The Physical layer gives us a stream of bits. How do we
interpret it as a sequence of frames?

) |
..10110 ...

Framing Methods

* We'll look at:
— Byte count (motivation)
— Byte stuffing
— Bit stuffing

* |In practice, the physical layer often helps to identify
frame boundaries

— E.g., Ethernet, 802.11

10




4/22/15

Byte Count

* First try:
— Let’s start each frame with a length field!

— It’s simple, and hopefully good enough ...

11

Byte Count (2)
/ / \ Byte count \ O{iyte

(sl 1]2]3[4]s[e[7]8]o]sfo]1][2]3[4]s[6]8]7][s[0f0[1][2]3]

Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes

* How well do you think it works?

12




4/22/15

Byte Count (3)

 Difficult to re-synchronize after framing error
— Want a way to scan for a start of frame

Error

(5[ [2[2[al7 e[ ]e o e o[ 1] 2[2[4]= e a7 e o o[ [2[3]

Frame 1 Frame 2 Now a byte
(Wrong) count

13

Byte Stuffing

* Betteridea:
— Have a special flag byte value that means start/end of frame
— Replace (“stuff”) the flag inside the frame with an escape code
— Complication: have to escape the escape code too!

FLAG| Header Payload field Trailer |FLAG

14




4/22/15

* Rules:

Byte Stuffing (2)

— Replace each FLAG in data with ESC FLAG
— Replace each ESC in data with ESC ESC

Original bytes

A FLAG B

A ESC B

A ESC | |FLAG
A ESC | | ESC

15

Byte Stuffing (3)

* Now any unescaped FLAG is the start/end of a frame

Original bytes

A FLAG

B

A ESC

B

A ESC

FLAG

A ESC

ESC

After stuffing

ESC

FLAG

ESC

ESC

ESC

ESC

ESC

FLAG

ESC

ESC

ESC

ESC

16




4/22/15

Bit Stuffing

e Can stuff at the bit level too
— Call a flag six consecutive 1s
— On transmit, after five 1s in the data, inserta O
— On receive, a 0 after five 1s is deleted

17

Bit Stuffing (2)
* Example:

Databits. 011011111111111111110010

Transmitted bits
with stuffing

18




4/22/15

Bit Stuffing (3)
* So how does it compare with byte stuffing?

Databits 011011111111111111110010

Transmitted bits 011011111011111011111010010
with stuffing \ T
Stuffed bits

19

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol

* Widely used for link framing

— E.g., itis used to frame IP packets that are sent over
SONET optical links

20

10



4/22/15

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the
framing that carries an IP packet over the link

IP packet

Router\ P IP
PPP PPP |___PPPframe |
SONET optical | soNET [ SONET payload |[ SONET payload |

PPP frames may be split over

Protocol stacks SONET payloads

21

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
— FLAG is Ox7E and ESCis Ox7D

Bytes 1 1 1 1or2 Variable 2o0r4 1
FI Add Control —" Fi
ag ress ontro ag
01111110 | 11111111 | 00000011 | "rotocol | Payload | Checksum | 41454,

((
1]

22

11



4/22/15

Link Example: PPP over SONET (4)

* Byte stuffing method:

— To stuff (unstuff) a byte, add (remove) ESC (0x7D),
and XOR byte with 0x20

— Removes FLAG from the contents of the frame

23

Error Coding Overview (§3.2)

* Some bits will be received in error due to noise. What can
we do?
— Detect errors with codes
— Correct errors with codes
— Retransmit lost frames Later
* Reliability is a concern that cuts across the layers — weé’ll
see it again

24

12



4/22/15

Problem — Noise may flip received bits

50 O O O I

Signal

sighdy 111
Noisy 0 0 0 0 0

iy 0 0 0 0 0

25

Approach — Add Redundancy

* Error detection codes

— Add check bits to the message bits to let some errors be
detected

* Error correction codes
— Add more check bits to let some errors be corrected

* Key issue is now to structure the code to detect many
errors with few check bits and modest computation

26

13



4/22/15

Motivating Example

* Asimple code to handle errors:
— Send two copies! Error if different.

* How good is this code?
— How many errors can it detect/correct?
— How many errors will make it fail?

27

Motivating Example (2)

* We want to handle more errors with less overhead

— Will look at better codes; they are applied mathematics
— But, they can’t handle all errors
— And they focus on accidental errors

28

14



4/22/15

Using Error Codes

e Codeword consists of D data plus R check bits
(=systematic block code)

Data bits Check bits
D R=fn(D) —>

* Sender:

— Compute R check bits based on the D data bits; send the
codeword of D+R bits

29

Using Error Codes (2)

* Receiver:
— Receive D+R bits with unknown errors

— Recompute R check bits based on the D data bits; error if R
doesn’t match R’

Data bits Check bits
—> D R’ N\
/1

=?

R=fn(D)

30

15



4/22/15

Intuition for Error Codes
* For D data bits, R check bits:

All
codewords

Correct
codewords

* Randomly chosen codeword is unlikely to be correct;
overhead is low

31

R.W. Hamming (1915-1998)

e Much early work on codes:

— “Error Detecting and Error
Correcting Codes”, BSTJ, 1950

e See also:
— “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

32

16



4/22/15

Hamming Distance

* Distance is the number of bit flips needed to change
D+R, to D+R,

* Hamming distance of a code is the minimum distance
between any pair of codewords

33

Hamming Distance (2)

* Error detection:

— For a code of Hamming distance d+1, up to d errors will always
be detected

34

17



4/22/15

Hamming Distance (3)

* Error correction:

— For a code of Hamming distance 2d+1, up to d errors can
always be corrected by mapping to the closest codeword

35

Error Detection (§3.2.2)

* Some bits may be received in error due to noise. How
do we detect this?

— Parity
— Checksums
— CRCs

* Detection will let us fix the error, for example, by
retransmission (later)

36

18



4/22/15

Simple Error Detection — Parity Bit
* Take D data bits, add 1 check bit that is the sum of the D

bits
— Sum is modulo 2 or XOR

37

Parity Bit (2)

* How well does parity work?
— What is the distance of the code?

— How many errors will it detect/correct?

* What about larger errors?

38

19



4/22/15

Checksums

* |dea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes

16 bits

* Stronger protection than parity

39

Internet Checksum

e Sum is defined in 1s complement arithmetic (must add

back carries)

— And it’s the negative sum

* “The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words ...” — RFC 791

40

20



4/22/15

Internet Checksum (2)

. 0001
Sending: £203

. . £f4£5
1. Arrange data in 16-bit words et

2. Put zero in checksum position, add

3.Add any carryover back to get 16 bit

4. Negate (complement) to get sum

41

Internet Checksum (3)

—— 0001
Sending: £203
1. Arrange data in 16-bit words gég’
2. Put zero in checksum position, add +(0000)

2dd£0

3. Add any carryover back to get 16 bits + 5

4. Negate (complement) to get sum 220d

42

21



4/22/15

Internet Checksum (4)

R 0001
Receiving: £203
1.Arrange data in 16-bit words §§§3

+ 220d

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and check it is O

43

Internet Checksum (5)

N 0001
Receiving: £203
1.Arrange data in 16-bit words et
2.Checksum will be non-zero, add + 220d

2£££d

3.Add any carryover back to get 16 bits + 2

4.Negate the result and check it is O 0000

44

22



4/22/15

Internet Checksum (6)

* How well does the checksum work?
— What is the distance of the code?
— How many errors will it detect/correct?

* What about larger errors?

45

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check bits such that the n+k bits
are evenly divisible by a generator C

* Example with numbers:
— Message = 302, k = one digit, C=3

46

23



4/22/15

CRCs (2)

* The catch:

— It’s based on mathematics of finite fields, in which
“numbers” represent polynomials

— e.g., 10011010 is x” + x* + x3 + x1

 What this means:

— We work with binary values and operate using modulo 2
arithmetic

47

CRCs (3)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

B wnN e

* Receive Procedure:
1. Divide and check for zero remainder

48

24



4/22/15

CRCs (4)

1001111010111 11

Data bits:
1101011111

Check bits:

C(x)=x*x1+1
C=10011

49

CRCs (5)

1100001 1T 10 =

Quotient (thrown away)

Frame with four zeros appended

Remainder

- [ e O~ | OO0|0O0
[ —— - Q| —00|0O0|00
- memememcmme——am = O~ O|~ O|~ O]~ —

T mmeme————— » = Q| O~ O|~ O|~

e = O O O O —

— -~ |0 OO0 O[O0 0|0 O

O |~ (0 Q00|00

— |0 00 OO0

OO0 oo O

- O~ —

S

100 11

1710101111100 1 0-=— Frame with four zeros appended

Transmitted frame:

minus remainder

50

25



4/22/15

CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 1 0000 0100 1100 0001 0001 1101 1011
0111

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors (i.e., moving data around)
like checksums

51

Error Detection in Practice

* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

* Checksum used in Internet
— IP, TCP, UDP ... but it is weak

* Parity
— Is little used

52

26



4/22/15

Error Correction (§3.2.1)

Some bits may be received in error due to noise.
How do we fix them?

— Hamming code
— Other codes

And why should we use detection when we can use
correction?

53

Why Error Correction is Hard

If we had reliable check bits we could use them to
narrow down the position of the error
— Then correction would be easy

But error could be in the check bits as well as the data
bits!

— Data might even be correct

54

27



4/22/15

Intuition for Error Correcting Code

e Suppose we construct a code with a Hamming distance
of at least 3
— Need 23 bit errors to change one valid codeword into another
— Single bit errors will be closest to a unique valid codeword

* |f we assume errors are only 1 bit, we can correct them
by mapping an error to the closest valid codeword
— Works for d errors if HD > 2d + 1

55

Intuition (2)

e Visualization of code:

OOQOOOO . vaid
O O Q “6odeword
—

oL Jetst Teprind
O00O000O

56

28



4/22/15

Intuition (3)
* Visualization of code:

Single O ‘ O O Q O Valid
k:cit errzr O “ Ol @ Ocodeword
rom O®OO0O

Three bit ‘ Q’ Q Q O Q\Error
errors to Q ‘ Q Q O codeword

57

Hamming Code

* Gives a method for constructing a code with a distance
of 3

_ Usesn=2K—k- 1, e.g., n=4, k=3

— Put check bits in positions p that are powers of 2, starting with
position 1

— Check bit in position p is parity of positions with a p term in
their values

* Plus an easy way to correct [soon]

58

29



4/22/15

Hamming Code (2)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

59

Hamming Code (3)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3,5, 7
— Check 2 covers positions 2, 3,6, 7
— Check 4 covers positions 4, 5, 6, 7

0100101 —

p1= 0+1+1 =0, p,=0+0+1 =1, p,= 1+0+1 =0

60

30



4/22/15

Hamming Code (4)

* To decode:
— Recompute check bits (with parity sum including the check bit)
— Arrange as a binary number
— Value (syndrome) tells error position
— Value of zero means no error
— Otherwise, flip bit to correct

61

Hamming Code (5)
* Example, continued
— 0100101

P1= Py>=
P4=

Syndrome =
Data =

62

31



4/22/15

Hamming Code (6)
* Example, continued
— 0100101
P1= 0+0+1+1 =0, Py= 1+0+0+1 =0,
py=0+1+0+1=0

Syndrome = 000, no error
Data=0101

63

Hamming Code (7)
* Example, continued

—>0100111

P1= Py>=
P4=

Syndrome =

Data =

64

32



4/22/15

Hamming Code (8)
* Example, continued

— 0100111

p,=0+0+1+1=0, p,=1+0+1+1=1,
py=0+1+1+1=1

Syndrome =1 10, flip position 6
Data=01 01 (correct after flip!)

65

Other Error Correction Codes

* Codes used in practice are much more involved than
Hamming

e Convolutional codes (§3.2.3)
— Take a stream of data and output a mix of the recent input bits

— Makes each output bit less fragile
— Decode using Viterbi algorithm (which can use bit confidence
values)

66

33



4/22/15

Other Codes (2) — LDPC

* Low Density Parity Check (§3.2.3)

— LDPC based on sparse matrices
— Decoded iteratively using a belief
propagation algorithm
— State of the art today
* Invented by Robert Gallager in
1963 as part of his PhD thesis

— Promptly forgotten until 1996 ...

Source: IEEE GHN, © 2009 IEEE

67

Detection vs. Correction

* Which is better will depend on the pattern of errors. For
example:
— 1000 bit messages with a bit error rate (BER) of 1 in 10000

* Which has less overhead?
— It depends! We need to know more about the errors

68

34



4/22/15

Detection vs. Correction (2)

Assume bit errors are random
— Messages have 0 or maybe 1 error

Error correction:
— Need ~10 check bits per message
— Overhead:

Error detection:

— Need ~1 check bit per message plus 1000 bit retransmission 1/10 of the

time
— Overhead:

69

Detection vs. Correction (3)

Assume errors come in bursts of 100 consecutively garbled bits
— Only 1 or 2 messages in 1000 have errors

Error correction:
— Need >>100 check bits per message
— Overhead:

Error detection:

— Can use 32 check bits per message plus 1000 bit resend 2/1000 of the time

— Overhead:

70

35



4/22/15

Detection vs. Correction (4)

Error correction:

— Needed when errors are expected
* Small number of errors are correctable

— Or when no time for retransmission

Error detection:
— More efficient when errors are not expected
— And when errors are large when they do occur

71

Error Correction in Practice

Heavily used in physical layer
— LDPCis the future, used for demanding links like 802.11, DVB, WiMAX, LTE,
power-line, ...
— Convolutional codes widely used in practice

Error detection (with retransmission) is used in the link layer and above
for residual errors

Correction also used in the application layer

— Called Forward Error Correction (FEC)

— Normally with an erasure error model (entire packets are lost)
— E.g., Reed-Solomon (CDs, DVDs, etc.)

72

36



