Operating Systems and Networks

Network Lecture 3: Link Layer (1)

Adrian Perrig
Network Security Group
ETH Zurich

Pending Issues

Earlier posting of lecture slides
Answering student questions
Project 1 is out

Exercise sessions starting today

Where we are in the Course

* Moving on to the Link Layer!

Application

Transport

Network
Link
Physical

Scope of the Link Layer

 Concerns how to transfer MEeSSages over one or more
connected links
— Messages are frames, of limited size
— Builds on the physical layer

Frame >

|

In terms of layers ...

Sending machine Receiving machine
Network Packet Packet
1
¢ t
Link
Physical t Actual data path J

>

In terms of layers (2)

Sending machine Receiving machine
Network Packet Packet
Frame
J
Link Header | Payload field Trailer Header | Payload field Trailer
| Virtual data path |
_____________ >

| |

Physical t Actual data path J

>

Typical Implementation of Layers

Application

Computer

4— Operating System
Network
: Driver
Link
Link Network Interface

_——" card (NIC)

Cable (medium)

1.

2.

3.

4.

5.

Framing

Topics

— Delimiting start/end of frames
Error detection and correction

— Handling errors

Retransmissions

— Handling loss

Multiple Access

— 802.11, classic Ethernet
Switching

— Modern Ethernet

Later

Framing (§3.1.2)

* The Physical layer gives us a stream of bits. How do we
interpret it as a sequence of frames?

(om)

J| ...10110 ...

Framing Methods

 We'll look at:
— Byte count (motivation)
— Byte stuffing
— Bit stuffing

* |n practice, the physical layer often helps to identify
frame boundaries

— E.g., Ethernet, 802.11

10

Byte Count

* First try:
— Let’s start each frame with a length field!
— It’s simple, and hopefully good enough ...

11

Byte Count (2)

/ / \ Byte count \ O{iyte
511

2(3(4(5(6|7(8[9|8|0(1]|2[3[4|5|6(8|7|8[9|0]1]2]3

<\ A\ AN -
Y Y Y Y

Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes

* How well do you think it works?

12

Byte Count (3)

 Difficult to re-synchronize after framing error
— Want a way to scan for a start of frame

Error

S{1]2(3(4|7(6|7[8[9(8[0(1]2|3[4|5(6(8(7|8(9|0]1]2

v /N v ’\

Frame 1 Frame 2 Now a bhyte
(Wrong) count

Byte Stuffing

* Better idea:
— Have a special flag byte value that means start/end of frame
— Replace (“stuff”) the flag inside the frame with an escape code
— Complication: have to escape the escape code too!

FLAG| Header Payload field Trailer [FLAG

14

Byte Stuffing (2)
* Rules:

— Replace each FLAG in data with ESC FLAG
— Replace each ESC in data with ESC ESC

Original bytes
A FLAG B —_—
A ESC B —_—

A ESC | |[FLAG B —_—

A ESC | | ESC B —_—

Byte Stuffing (3)

* Now any unescaped FLAG is the start/end of a frame

Original bytes
A FLAG B
A ESC B
A ESC | |FLAG
A ESC | | ESC

After stuffing

ESC | [FLAG B

ESC ESC B

ESC | | ESC | | ESC | [FLAG
ESC | |ESC || ESC| | ESC

16

Bit Stuffing

* Can stuff at the bit level too
— Call a flag six consecutive 1s
— On transmit, after five 1s in the data, inserta O
— On receive, a 0 after five 1s is deleted

17

Bit Stuffing (2)
* Example:

Databits,. 011011111111111111110010

Transmitted bits
with stuffing

18

Bit Stuffing (3)
* So how does it compare with byte stuffing?

Data bits 011011111111111111110010

Transmitted bits 011011111011111011111010010

with stuffing T~ }

Stuffed bits

19

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol
* Widely used for link framing

— E.g., it is used to frame IP packets that are sent over
SONET optical links

20

Link Example: PPP over SONET (2)

Think of SONET as a bit stream, and PPP as the

framing that carries an IP packet over the link

IP packet
::
PPP frame

\)
Y Y

SONET payload || SONET payload

Router\ IP P
PPP PPP
SONET t?bp;ircal SONET
N— ' 7

Protocol stacks

PPP frames may be split over
SONET payloads

21

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
— FLAG is Ox7E and ESCis Ox7D

Bytes 1 1 1 1or2 Variable 2or4 1
((

)

Protocol | Payload | Checksum
((
))

Flag Address Control
01111110 11111111 | 00000011

Flag
01111110

Link Example: PPP over SONET (4)

* Byte stuffing method:

— To stuff (unstuff) a byte, add (remove) ESC (0x7D),
and XOR byte with 0x20

— Removes FLAG from the contents of the frame

23

Error Coding Overview (§3.2)

* Some bits will be received in error due to noise. What can
we do?

— Detect errors with codes
— Correct errors with codes

— Retransmit lost frames Later

* Reliability is a concern that cuts across the layers — we’ll
see it again

24

Problem — Noise may flip received bits

Signal

Slightly
Noisy

Very
noisy

1

1

1

0

25

Approach — Add Redundancy

 Error detection codes

— Add check bits to the message bits to let some errors be
detected

* Error correction codes
— Add more check bits to let some errors be corrected

e Key issue is now to structure the code to detect many
errors with few check bits and modest computation

26

Motivating Example

* A simple code to handle errors:
— Send two copies! Error if different.

* How good is this code?
— How many errors can it detect/correct?
— How many errors will make it fail?

27

Motivating Example (2)

* We want to handle more errors with less overhead
— Will look at better codes; they are applied mathematics
— But, they can’t handle all errors
— And they focus on accidental errors

28

Using Error Codes

* Codeword consists of D data plus R check bits
(=systematic block code)

Data bits Check bits
D R=fn(D) —>

e Sender:

— Compute R check bits based on the D data bits; send the
codeword of D+R bits

Using Error Codes (2)

e Recelver:

— Receive D+R bits with unknown errors

— Recompute R check bits based on the D data bits; error if R
doesn’t match R’

Data bits Check bits

—> D R’ \ ,
R=fn(D) "

Intuition for Error Codes
* For D data bits, R check bits:

All —()
codewords
Correct— T O
codewords - /

* Randomly chosen codeword is unlikely to be correct;
overhead is low

RW. Homming (1915-1998)

* Much early work on codes:

— “Error Detecting and Error
Correcting Codes”, BSTJ, 1950

* See also:
— “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

32

Hamming Distance

* Distance is the number of bit flips needed to change
D+R,; to D+R,

e Hamming distance of a code is the minimum distance
between any pair of codewords

33

Hamming Distance (2)

 Error detection:

— For a code of Hamming distance d+1, up to d errors will always
be detected

34

Hamming Distance (3)

Error correction:

— For a code of Hamming distance 2d+1, up to d errors can
always be corrected by mapping to the closest codeword

35

Error Detection (§3.2.2)

* Some bits may be received in error due to noise. How
do we detect this?

— Parity
— Checksums
— CRGCs

* Detection will let us fix the error, for example, by
retransmission (later)

36

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit that is the sum of the D
bits
— Sum is modulo 2 or XOR

37

Parity Bit (2)

* How well does parity work?
— What is the distance of the code?

— How many errors will it detect/correct?

 What about larger errors?

38

Checksums

ldea: sum up data in N-bit words
— Widely used in, e.g., TCP/IP/UDP

1500 bytes

16 bits

Stronger protection than parity

39

Internet Checksum

Sum is defined in 1s complement arithmetic (must add
back carries)
— And it’s the negative sum

“The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words ...” — RFC 791

40

Internet Checksum (2)

Sending: 0903
1. Arrange data in 16-bit words i

2.Put zero in checksum position, add

3. Add any carryover back to get 16 bit

4. Negate (complement) to get sum

Internet Checksum (3)

. 0001
Sending: £03

£4£5
f6£f7
+(0000)

1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits + 2

4. Negate (complement) to get sum 2204

42

Internet Checksum (4)

L 0001
Receiving: £203
1.Arrange data in 16-bit words 5465’

+ 220d

2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and checkitis O

43

Internet Checksum (5)

Ning- 0001
Receiving: £203

£4£5
f6£7
+ 220d

1.Arrange data in 16-bit words
2.Checksum will be non-zero, add

3.Add any carryover back to get 16 bits

4.Negate the result and checkitis O 0000

44

Internet Checksum (6)

e How well does the checksum work?

— What is the distance of the code?
— How many errors will it detect/correct?

 What about larger errors?

45

Cyclic Redundancy Check (CRC)

* Even stronger protection

— Given n data bits, generate k check bits such that the n+k bits
are evenly divisible by a generator C

* Example with numbers:
— Message = 302, k = one digit, C=3

46

CRCs (2)

* The catch:

— It’s based on mathematics of finite fields, in which
“numbers” represent polynomials

— e.g., 10011010 is x” + x* + x3 + x1

 What this means:

— We work with binary values and operate using modulo 2
arithmetic

CRCs (3)

* Send Procedure:

Extend the n data bits with k zeros
Divide by the generator value C
Keep remainder, ignore quotient
Adjust k check bits by remainder

BN e

 Receive Procedure:
1. Divide and check for zero remainder

Data bits:
1101011111

Check bits:
C(x)=x*+x+1
C=10011
k=4

CRCs (4)

1001111010111 1 1

49

CRCs (5)

1 0 =— Quotient (thrown away)

11 0 00O 1

||||||||||||||||| m—nmeme O (= =0 OO0
||||||||||||||||||| > = Q| —0O 00000

10 0 0 0 =— Frame with four zeros appended

™ =-—=-=-ss==== mup— O™ O|™ O~ O~ «—
T me—mem-es- == Q| O~ O~ Of

— ————— > = QI O~ O|~ O~ —

— =0 OO0 00000

O~ ~0QO0|I00

Anli ol (e N o] ol o))

[wNe] [oNo] oo

1 0 =— Remainder

1 0 0 1 0 =— Frame with four zeros appended

1 1

11

10 10

Transmitted frame:

minus remainder

50

CRCs (6)

* Protection depend on generator

— Standard CRC-32 is 1 0000 0100 1100 0001 0001 1101 1011
0111

* Properties:
— HD=4, detects up to triple bit errors
— Also odd number of errors
— And bursts of up to k bits in error

— Not vulnerable to systematic errors (i.e., moving data around)
like checksums

Error Detection in Practice
* CRCs are widely used on links
— Ethernet, 802.11, ADSL, Cable ...

e Checksum used in Internet
— |P, TCP, UDP ... but it is weak

* Parity
— Is little used

52

Error Correction (§3.2.1)

* Some bits may be received in error due to noise.
How do we fix them?

— Hamming code
— Other codes

* And why should we use detection when we can use
correction?

53

Why Error Correction is Hard

* |f we had reliable check bits we could use them to
narrow down the position of the error
— Then correction would be easy

* But error could be in the check bits as well as the data
bits!

— Data might even be correct

54

Intuition for Error Correcting Code

* Suppose we construct a code with a Hamming distance
of at least 3

— Need >3 bit errors to change one valid codeword into another
— Single bit errors will be closest to a unique valid codeword

* If we assume errors are only 1 bit, we can correct them
by mapping an error to the closest valid codeword
— Works for d errors if HD 2 2d + 1

55

Intuition (2)

* Visualization of code:

OQOOO O valic
O O O .ﬁodeword

OO0000

0QOOOC.,
O O O . O codg/(\)/(r)rd

OO0000

Intuition (3)

* Visualization of code:

OO0
Singl
bfit'l“?ri>o % O
A
fom @ Q
Three bit Q
errors to Q Q
gettoB

Q Q Q Valid
Q Qﬁodeword
OO0

000
O@O e

OO0000

Hamming Code

* Gives a method for constructing a code with a distance
of 3
— Usesn = 2K k- 1, e.g., n=4, k=3

— Put check bits in positions p that are powers of 2, starting with
position 1

— Check bit in position p is parity of positions with a p term in
their values

* Plus an easy way to correct [soon]

58

Hamming Code (2)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

59

Hamming Code (3)

* Example: data=0101, 3 check bits
— 7 bit code, check bit positions 1, 2, 4
— Check 1 covers positions 1, 3, 5, 7
— Check 2 covers positions 2, 3, 6, 7
— Check 4 covers positions 4, 5, 6, 7

0100101 —

p1= O+1+1 = O, p2= 0+0+1 = 1, p4= 1+0+1 =0

60

Hamming Code (4)

* To decode:
— Recompute check bits (with parity sum including the check bit)
— Arrange as a binary number
— Value (syndrome) tells error position
— Value of zero means no error

— Otherwise, flip bit to correct

61

Hamming Code (5)
* Example, continued

—>0100101

P1= Py=
Pg=

Syndrome =
Data =

62

Hamming Code (6)
* Example, continued

—>0100101

p,=0+0+1+1=0, p,=1+0+0+1=0,
p,=0+1+0+1=0

Syndrome = 000, no error
Data=0101

63

Hamming Code (7)
* Example, continued

—>0100111

P1= Py=
Pg=

Syndrome =
Data =

64

Hamming Code (8)
* Example, continued

—>0100111

p1=0+0+1+1=0, p,=1+0+1+1=1,
ps=0+1+1+1=1

Syndrome =1 10, flip position 6
Data=01 01 (correct after flip!)

65

Other Error Correction Codes

* Codes used in practice are much more involved than
Hamming

e Convolutional codes (§3.2.3)
— Take a stream of data and output a mix of the recent input bits
— Makes each output bit less fragile

— Decode using Viterbi algorithm (which can use bit confidence
values)

66

Other Codes (2) — LDPC

* Low Density Parity Check (§3.2.3)

— LDPC based on sparse matrices

— Decoded iteratively using a belief
propagation algorithm

— State of the art today

* |Invented by Robert Gallager in
1963 as part of his PhD thesis

— Promptly forgotten until 1996 ...

Source: IEEE GHN, © 2009 IEEE

67

Detection vs. Correction

* Which is better will depend on the pattern of errors. For
example:
— 1000 bit messages with a bit error rate (BER) of 1 in 10000

* Which has less overhead?

— It depends! We need to know more about the errors

68

1.

Detection vs. Correction (2)

Assume bit errors are random
— Messages have 0 or maybe 1 error

Error correction:
— Need ~10 check bits per message
— QOverhead:

Error detection:
— Need ~1 check bit per message plus 1000 bit retransmission 1/10 of the
time
— Overhead:

69

Detection vs. Correction (3)

2. Assume errors come in bursts of 100 consecutively garbled bits
— Only 1 or 2 messages in 1000 have errors

* Error correction:
— Need >>100 check bits per message
— Overhead:

 Error detection:

— Can use 32 check bits per message plus 1000 bit resend 2/1000 of the time
— Overhead:

70

Detection vs. Correction (4)

* Error correction:

— Needed when errors are expected
 Small number of errors are correctable

— Or when no time for retransmission
* Error detection:
— More efficient when errors are not expected
— And when errors are large when they do occur

71

Error Correction in Practice

Heavily used in physical layer
— LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, LTE,
power-line, ...

— Convolutional codes widely used in practice

Error detection (with retransmission) is used in the link layer and above
for residual errors

Correction also used in the application layer
— Called Forward Error Correction (FEC)
— Normally with an erasure error model (entire packets are lost)
— E.g., Reed-Solomon (CDs, DVDs, etc.)

72

