
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session
SPIN Tutorial

spcl.inf.ethz.ch
@spcl_eth

2

Last week:

 Roofline model
 Balance principle
 Basic idea: Models for performance expectation!

spcl.inf.ethz.ch
@spcl_eth

3

This week:

 You have heard a lot about locks

– They are complicated

– They are difficult to optimize

– Over-optimization quickly leads to incorrect locks

– So how do we make sure locks (or other parallel primitives)
are correct in practice?

spcl.inf.ethz.ch
@spcl_eth

 We have the necessary tools for proving correctness!
 Are they practical? Why or why not?

 Example:

– Recent bachelor thesis defense talk:
● Implemented hierarchical R/W looks for distributed

systems, based on MCS lock
● Question:

– How did ensure correctness?
– How would you do it?

4

Reasoning about correctness

spcl.inf.ethz.ch
@spcl_eth

 One tool that can aid us in proving properties of parallel code is
SPIN

 Free software, “large” user base, lots of documentation on
spinroot.com

 SPIN is based on model checking
 There are other approaches

– Abstract interpretation

– Profiling/Tracing (does this really prove something?)

 General idea:

– Represent process as a state-machine

– When processes run in parallel, generate all possible
interleaving of states (state space explosion!)

– Formulate invariants for the combined state machine

5

SPIN

spcl.inf.ethz.ch
@spcl_eth

 Need a way to describe these state machines
 If that description is “too far off” from our code, we risk

specifying the wrong state machine!

 SPIN = Simple Promela Interpreter
 PROMELA = PROcess MEta LAnguage

6

SPIN

spcl.inf.ethz.ch
@spcl_eth

7

Hello World
/* A "Hello World" Promela model for SPIN. */

active proctype Hello() {
 printf("Hello process, my pid is: %d\n", _pid);
}

init {
int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

Execute in random simulation mode: spin -n2 hello.pr

spcl.inf.ethz.ch
@spcl_eth

 The body of a process consists of a sequence of statements. A
statement is either

– executable: the statement can be executed immediately
– blocked: the statement cannot be executed.

 An assignment is always executable.
 An expression is also a statement; it is executable if it evaluates

to non-zero.
– 2 < 3 always executable
– x < 27 only executable if value of x is smaller 27
– 3 + x executable if x is not equal to –3

 The assert-statement is always executable.

 If <expr> in assert evaluates to zero, SPIN will exit with an error,
as the <expr> “has been violated”

8

PROMELA Semantics

spcl.inf.ethz.ch
@spcl_eth

9

PROMELA Example: Mutual Exclusion?

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */

proctype P(int i) {
flag != 1;
flag = 1;
mutex++;
printf("MSC: P(%d) has entered section.\n", i);
mutex--;
flag = 0;

}

proctype monitor() {
assert(mutex != 2);

}

init {
 run P(0); run P(1); run monitor();
}

spcl.inf.ethz.ch
@spcl_eth

10

PROMELA Example: Mutual Exclusion?

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++; mutex--;
x = 0;

}

active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
x == 0;
mutex++; mutex--;
Y = 0;

}

spcl.inf.ethz.ch
@spcl_eth

11

PROMELA Example: Mutual Exclusion?

 Show how these things can be run in practice and what we can
observe (DEMO)

– Random simulation mode – this is like software testing

– Guided simulation mode (-i)

– Verification mode (spin -a lock.pr; gcc pan.c; ...)
● This is why people use SPIN
● Generates a verifier in C code, so that compiler can

optimize it
● Then exhaustively searches all possible states
● Can be slow/eat all your memory

spcl.inf.ethz.ch
@spcl_eth

12

PROMELA Semantics: if

if
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
fi;

● If there is at least one choice (guard) executable, the if
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

● The “else” choice is executable iff no other choices are

● If no choice is executable, the if-statement is blocked

spcl.inf.ethz.ch
@spcl_eth

13

PROMELA Semantics: do

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

● With respect to the choices, a do-statement behaves in the
same way as an if-statement.

● However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

● The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop

spcl.inf.ethz.ch
@spcl_eth

14

PROMELA Semantics: Communication

chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

Example:
mtype {MSG, ACK};
chan toS = [2] of {mtype, bit};

● Communication between processes is via channels:

– message passing

– rendez-vous synchronisation (handshake)

● Both are defined as channels

spcl.inf.ethz.ch
@spcl_eth

15

PROMELA Semantics: Communication
● channel = FIFO-buffer (for dim>0)

● ! Sending - putting a message into a channel

ch ! <expr1>, <expr2>, … <exprn>;

● Values of <expri> must correspond with the types of the channel
declaration.

● A send-statement is executable if the channel is not full.

● ? Receiving - getting a message out of a channel

ch ? <var1>, <var2>, … <varn>;

● If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;

● If the channel is not empty and the message at the front of the
channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

spcl.inf.ethz.ch
@spcl_eth

16

Homework

 Use SPIN to solve the following riddle:

spcl.inf.ethz.ch
@spcl_eth

17

Homework

 Take the “better than Dijkstra” lock from the slides of lecture 10
and show that it does not work using SPIN.

	Slide 1
	Cache Organization – Cachelines & Sets
	Slide 3
	Cache Organization – Lookup Procedure
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

