
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session
SPIN Tutorial

spcl.inf.ethz.ch
@spcl_eth

2

Last week:

 Roofline model
 Balance principle
 Basic idea: Models for performance expectation!

spcl.inf.ethz.ch
@spcl_eth

3

This week:

 You have heard a lot about locks

– They are complicated

– They are difficult to optimize

– Over-optimization quickly leads to incorrect locks

– So how do we make sure locks (or other parallel primitives)
are correct in practice?

spcl.inf.ethz.ch
@spcl_eth

 We have the necessary tools for proving correctness!
 Are they practical? Why or why not?

 Example:

– Recent bachelor thesis defense talk:
● Implemented hierarchical R/W looks for distributed

systems, based on MCS lock
● Question:

– How did ensure correctness?
– How would you do it?

4

Reasoning about correctness

spcl.inf.ethz.ch
@spcl_eth

 One tool that can aid us in proving properties of parallel code is
SPIN

 Free software, “large” user base, lots of documentation on
spinroot.com

 SPIN is based on model checking
 There are other approaches

– Abstract interpretation

– Profiling/Tracing (does this really prove something?)

 General idea:

– Represent process as a state-machine

– When processes run in parallel, generate all possible
interleaving of states (state space explosion!)

– Formulate invariants for the combined state machine

5

SPIN

spcl.inf.ethz.ch
@spcl_eth

 Need a way to describe these state machines
 If that description is “too far off” from our code, we risk

specifying the wrong state machine!

 SPIN = Simple Promela Interpreter
 PROMELA = PROcess MEta LAnguage

6

SPIN

spcl.inf.ethz.ch
@spcl_eth

7

Hello World
/* A "Hello World" Promela model for SPIN. */

active proctype Hello() {
 printf("Hello process, my pid is: %d\n", _pid);
}

init {
int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

Execute in random simulation mode: spin -n2 hello.pr

spcl.inf.ethz.ch
@spcl_eth

 The body of a process consists of a sequence of statements. A
statement is either

– executable: the statement can be executed immediately
– blocked: the statement cannot be executed.

 An assignment is always executable.
 An expression is also a statement; it is executable if it evaluates

to non-zero.
– 2 < 3 always executable
– x < 27 only executable if value of x is smaller 27
– 3 + x executable if x is not equal to –3

 The assert-statement is always executable.

 If <expr> in assert evaluates to zero, SPIN will exit with an error,
as the <expr> “has been violated”

8

PROMELA Semantics

spcl.inf.ethz.ch
@spcl_eth

9

PROMELA Example: Mutual Exclusion?

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */

proctype P(int i) {
flag != 1;
flag = 1;
mutex++;
printf("MSC: P(%d) has entered section.\n", i);
mutex--;
flag = 0;

}

proctype monitor() {
assert(mutex != 2);

}

init {
 run P(0); run P(1); run monitor();
}

spcl.inf.ethz.ch
@spcl_eth

10

PROMELA Example: Mutual Exclusion?

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++; mutex--;
x = 0;

}

active proctype monitor() {
assert(mutex != 2);

}

active proctype B() {
y = 1;
x == 0;
mutex++; mutex--;
Y = 0;

}

spcl.inf.ethz.ch
@spcl_eth

11

PROMELA Example: Mutual Exclusion?

 Show how these things can be run in practice and what we can
observe (DEMO)

– Random simulation mode – this is like software testing

– Guided simulation mode (-i)

– Verification mode (spin -a lock.pr; gcc pan.c; ...)
● This is why people use SPIN
● Generates a verifier in C code, so that compiler can

optimize it
● Then exhaustively searches all possible states
● Can be slow/eat all your memory

spcl.inf.ethz.ch
@spcl_eth

12

PROMELA Semantics: if

if
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
fi;

● If there is at least one choice (guard) executable, the if
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

● The “else” choice is executable iff no other choices are

● If no choice is executable, the if-statement is blocked

spcl.inf.ethz.ch
@spcl_eth

13

PROMELA Semantics: do

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

● With respect to the choices, a do-statement behaves in the
same way as an if-statement.

● However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

● The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop

spcl.inf.ethz.ch
@spcl_eth

14

PROMELA Semantics: Communication

chan <name> = [<dim>] of {<t1>,<t2>, … <tn>};

Example:
mtype {MSG, ACK};
chan toS = [2] of {mtype, bit};

● Communication between processes is via channels:

– message passing

– rendez-vous synchronisation (handshake)

● Both are defined as channels

spcl.inf.ethz.ch
@spcl_eth

15

PROMELA Semantics: Communication
● channel = FIFO-buffer (for dim>0)

● ! Sending - putting a message into a channel

ch ! <expr1>, <expr2>, … <exprn>;

● Values of <expri> must correspond with the types of the channel
declaration.

● A send-statement is executable if the channel is not full.

● ? Receiving - getting a message out of a channel

ch ? <var1>, <var2>, … <varn>;

● If the channel is not empty, the message is fetched from the channel
and the individual parts of the message are stored into the <vari>s.

ch ? <const1>, <const2>, … <constn>;

● If the channel is not empty and the message at the front of the
channel evaluates to the individual <consti>, the statement is
executable and the message is removed from the channel.

spcl.inf.ethz.ch
@spcl_eth

16

Homework

 Use SPIN to solve the following riddle:

spcl.inf.ethz.ch
@spcl_eth

17

Homework

 Take the “better than Dijkstra” lock from the slides of lecture 10
and show that it does not work using SPIN.

	Slide 1
	Cache Organization – Cachelines & Sets
	Slide 3
	Cache Organization – Lookup Procedure
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

