

spcl.inf.ethz.ch

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH> DPHPC Recitation Session Roofline Model

Last week:

- Amdahl's law
- Work/Depth model
- PRAM

- What is the work/depth of a matrix multiplication?
- Develop a PRAM algorithm for MM
- What kind of PRAM do we need for that?

Little's law

- In a queing system:
 - Latency (alpha)
 - Arrival rate (beta)
 - Waiting items (N)

alpha * beta = N

We can apply this model to memory! Latency * Throughput = Concurrency

spcl.inf.ethz.ch

Operational Intensity

- Operational Intensity I = #flops / #bytes
 - Can be meassured using perf. Counters
 - Can be modeled from the algorithm

Example: Matrix multiplication

Roofline Model

- There are two fundamental limits:
 - Memory bandwidth (beta)
 - Computational bandwidth (pi)

Balance Principles

- An architecture is balanced
 - For a specific algorithm
 - On a specific input
- If pi/beta = W/Q
- If this holds, how would the roofline plot look like?

Balance Principles (Kung)

- An architecture is balanced
 - For a specific algorithm
 - On a specific input
- If pi/beta = W/Q
- If this holds, how would the roofline plot look like?
- What happens if pi/beta increases? Can we rebalence, i.e., matrix multiplication
- How realistic is an increase of pi, beta?