Design of Parallel and

High Performance Computing

Fall 2015
About projects

Instructors: Torsten Hoefler & Markus Plischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Project: Rules

® Count 50% of the grade (work, presentation, report)
B Teams of three
" Important: organize yourselves

" You may use the mailinglist

B Topic: Some suggestions in a minute
® Timeline:
" Mid Oct: Announce project teams to TAs
" End Oct: Present your project in recitations
" Late Nov/early Dec: Possibly progress presentations

" Last week of class: Final project presentations

® Report:
" 6 pages, template provided, due January

Projects: Performance Optimization

® Pick an important algorithm/application
B Develop a parallel implementation that scales well on multicore

® Includes thorough benchmarking and experimental evaluation

B Requirements:
® No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research
" Not sorting or anything that is mainly sorting

Example From Before

Best algorithms for different input sizes

T

T T T I I I
: ' — Bitonic Mergesort SSE
— LSD Radixsort
—— Parallel Bitonic Mergesort SSE (16)
_ - Parallel Radixsort (8)

—— Parallel Radixsort SSE (4)

tbb::parallel sort

Runtime (nanoseconds per element)

12 214 216 218 220 222 224 226

Input size

Example From Before

= Uses our fastest implementations depending
on input size and adapts #threads accordingly

Bitonic LSD Parallel Radixsort Parallel Parallel Bitonic
Mergesort SSE Radixsort with SSE Radixsort Mergesort SSE

SURN NN I N N [N S N N N NN (S U N S B N N
28 21[] 212 214 216 218 220 222 224 226

Input Size

Project Proposals

Advisor: Torsten Hoefler
TA: Timo Schneider

Parallel Priority Queue (l)

B Maintain a collection of data items, identified by a key. Finding
the k smallest items (with the k smallest keys) should be
supported in O(k) time. Finding any item by key should also be
supported.

Required Operations

queue_t init()

void insert(queue_t q, void* data, uinté64_t key)
void*find(queue_t q, uinté64_t key)

void delete(queue_t q, uint64_t key)

void*pop_front(queue_t q, int k) // returns k smallest elements

void finalize(queue_t q)

Parallel Priority Queue (lI)

B Requirements contd.

= Multiple threads will be accessing the queue simultaneously (with all
operations)

® Code may be written in C/C++ (gcc inline assembly is allowed ;-))

¥ Tips:
" Experiment with different locking strategies and compare the performance
" Pay attention to larger number of threads

" Maybe try MPI-3 One Sided

Collective Communications

B Assume P threads in shared memory

® Each thread p has:
" asetof input elements i, (0<j<n-1)

" aset of output elements o, (O<j<n-1)

® The post-condition (result) is:
n P . .
Oj,p = Zp:l ijp(0 <Jj <n)

" j.e,alloj,areidentical onall p

B Tips:
" Use the memory hierarchy and CC protocols (inline assembly is allowed!)

" First optimize small n, then large n

Parallel BFS

® Generate an ER graph G(n,p) given n and p

B Perform a breath first search from n/2 vertices
" Print the average maximum distance for any vertex

¥ Your implementation should exploit all available cores and perform
the BFS as fast as possible

Parallel Graph Algorithms

® Many more!
" Connected Components (CC)

= SSSP

= APSP (maybe too simple, looks like MatVec)
" Minimum spanning tree (MST)

" Vertex coloring

" Strongly connected components

... pick one and enjoy!

B Others
" A* search

® Various ML and Al algorithms (only nontrivial ones)

Mind the Lecture!!!

¥ Try to relate your project to the contents of the lecture!
" E.g., analyze sequential consistency (was very successful!)

" E.g., deal with memory models!

= E.g., write litmus tests for Xeon Phi (would be very very cool)
" Analyze overheads of atomic operations on Xeon Phi in detail
" Maybe even write a checking tool?

" Many many more (be creative!)

" Or talk to the Tas/Assistants

B Remember: you have until the end of October
" You can also check the slides from last year for later lecture topics

" This is of course all up to you

Schedule

B Some recitations will be used to demonstrate concepts in practice
" E.g., OpenMP basics, MPI basics, ...

B We will discuss “how to measure and report performance”
" This is a complex topic often done wrong

	Slide 1
	Project: Rules
	Projects: Performance Optimization
	Example From Before
	Example From Before
	Slide 6
	Parallel Priority Queue (I)
	Parallel Priority Queue (II)
	Collective Communications
	Parallel BFS
	Parallel Graph Algorithms
	Mind the Lecture!!!
	Schedule

