
Design of Parallel and
High Performance Computing
Fall 2015
About projects

Instructors: Torsten Hoefler & Markus Püschel
TA: Timo Schneider

© Markus Püschel
Computer Science

Project: Rules
 Count 50% of the grade (work, presentation, report)

 Teams of three
 Important: organize yourselves

 You may use the mailinglist

 Topic: Some suggestions in a minute

 Timeline:
 Mid Oct: Announce project teams to TAs

 End Oct: Present your project in recitations

 Late Nov/early Dec: Possibly progress presentations

 Last week of class: Final project presentations

 Report:
 6 pages, template provided, due January

© Markus Püschel
Computer Science

Projects: Performance Optimization
 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 Requirements:
 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research
 Not sorting or anything that is mainly sorting

© Markus Püschel
Computer Science

Example From Before

© Markus Püschel
Computer Science

Example From Before

Project Proposals

Advisor: Torsten Hoefler
TA: Timo Schneider

© Markus Püschel
Computer Science

Parallel Priority Queue (I)
 Maintain a collection of data items, identified by a key. Finding

the k smallest items (with the k smallest keys) should be
supported in O(k) time. Finding any item by key should also be
supported.

Required Operations
 queue_t init()
 void insert(queue_t q, void* data, uint64_t key)
 void*find(queue_t q, uint64_t key)
 void delete(queue_t q, uint64_t key)
 void*pop_front(queue_t q, int k) // returns k smallest elements
 void finalize(queue_t q)

© Markus Püschel
Computer Science

Parallel Priority Queue (II)
 Requirements contd.

 Multiple threads will be accessing the queue simultaneously (with all
operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:
 Experiment with different locking strategies and compare the performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided

© Markus Püschel
Computer Science

Collective Communications
 Assume P threads in shared memory

 Each thread p has:
 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:


 i.e., all oj,p are identical on all p

 Tips:
 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

© Markus Püschel
Computer Science

Parallel BFS
 Generate an ER graph G(n,p) given n and p

 Perform a breath first search from n/2 vertices
 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform
the BFS as fast as possible

© Markus Püschel
Computer Science

Parallel Graph Algorithms
 Many more!

 Connected Components (CC)

 SSSP

 APSP (maybe too simple, looks like MatVec)

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others
 A* search

 Various ML and AI algorithms (only nontrivial ones)

© Markus Püschel
Computer Science

Mind the Lecture!!!
 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 E.g., write litmus tests for Xeon Phi (would be very very cool)

 Analyze overheads of atomic operations on Xeon Phi in detail

 Maybe even write a checking tool?

 Many many more (be creative!)

 Or talk to the Tas/Assistants

 Remember: you have until the end of October
 You can also check the slides from last year for later lecture topics

 This is of course all up to you

© Markus Püschel
Computer Science

Schedule
 Some recitations will be used to demonstrate concepts in practice

 E.g., OpenMP basics, MPI basics, …

 We will discuss “how to measure and report performance”
 This is a complex topic often done wrong

	Slide 1
	Project: Rules
	Projects: Performance Optimization
	Example From Before
	Example From Before
	Slide 6
	Parallel Priority Queue (I)
	Parallel Priority Queue (II)
	Collective Communications
	Parallel BFS
	Parallel Graph Algorithms
	Mind the Lecture!!!
	Schedule

