
Design of Parallel and
High Performance Computing
Fall 2015
About projects

Instructors: Torsten Hoefler & Markus Püschel
TA: Timo Schneider

© Markus Püschel
Computer Science

Project: Rules
 Count 50% of the grade (work, presentation, report)

 Teams of three
 Important: organize yourselves

 You may use the mailinglist

 Topic: Some suggestions in a minute

 Timeline:
 Mid Oct: Announce project teams to TAs

 End Oct: Present your project in recitations

 Late Nov/early Dec: Possibly progress presentations

 Last week of class: Final project presentations

 Report:
 6 pages, template provided, due January

© Markus Püschel
Computer Science

Projects: Performance Optimization
 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 Requirements:
 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research
 Not sorting or anything that is mainly sorting

© Markus Püschel
Computer Science

Example From Before

© Markus Püschel
Computer Science

Example From Before

Project Proposals

Advisor: Torsten Hoefler
TA: Timo Schneider

© Markus Püschel
Computer Science

Parallel Priority Queue (I)
 Maintain a collection of data items, identified by a key. Finding

the k smallest items (with the k smallest keys) should be
supported in O(k) time. Finding any item by key should also be
supported.

Required Operations
 queue_t init()
 void insert(queue_t q, void* data, uint64_t key)
 void*find(queue_t q, uint64_t key)
 void delete(queue_t q, uint64_t key)
 void*pop_front(queue_t q, int k) // returns k smallest elements
 void finalize(queue_t q)

© Markus Püschel
Computer Science

Parallel Priority Queue (II)
 Requirements contd.

 Multiple threads will be accessing the queue simultaneously (with all
operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:
 Experiment with different locking strategies and compare the performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided

© Markus Püschel
Computer Science

Collective Communications
 Assume P threads in shared memory

 Each thread p has:
 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:

 i.e., all oj,p are identical on all p

 Tips:
 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

© Markus Püschel
Computer Science

Parallel BFS
 Generate an ER graph G(n,p) given n and p

 Perform a breath first search from n/2 vertices
 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform
the BFS as fast as possible

© Markus Püschel
Computer Science

Parallel Graph Algorithms
 Many more!

 Connected Components (CC)

 SSSP

 APSP (maybe too simple, looks like MatVec)

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others
 A* search

 Various ML and AI algorithms (only nontrivial ones)

© Markus Püschel
Computer Science

Mind the Lecture!!!
 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 E.g., write litmus tests for Xeon Phi (would be very very cool)

 Analyze overheads of atomic operations on Xeon Phi in detail

 Maybe even write a checking tool?

 Many many more (be creative!)

 Or talk to the Tas/Assistants

 Remember: you have until the end of October
 You can also check the slides from last year for later lecture topics

 This is of course all up to you

© Markus Püschel
Computer Science

Schedule
 Some recitations will be used to demonstrate concepts in practice

 E.g., OpenMP basics, MPI basics, …

 We will discuss “how to measure and report performance”
 This is a complex topic often done wrong

	Slide 1
	Project: Rules
	Projects: Performance Optimization
	Example From Before
	Example From Before
	Slide 6
	Parallel Priority Queue (I)
	Parallel Priority Queue (II)
	Collective Communications
	Parallel BFS
	Parallel Graph Algorithms
	Mind the Lecture!!!
	Schedule

