
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session 4
Linearizability

spcl.inf.ethz.ch
@spcl_eth

2

Open Questions from previous sessions:

 Why do we need a BusRdX* message if we already have a
BusRdX?

– For correctness, we do not need it – MESI works fine if we
just use BusRdX.

– BusRdX implies: “Fetch this line from memory!”.

– But if we have a line in S state and the processor writes to it
we don't need to fetch this line again, so we can save some
memory bandwidth by not fetching it!

– Hence, we have a seperate message for that.

spcl.inf.ethz.ch
@spcl_eth

 Why do we need it?

– Suppose you have a shared variable and you observe the
following:

A writes 1, B writes 2, B reads 1

– In sequential consistency terms:

A: w(1)

B: w(2); r():1

– Is this sequentially consistent?
● Yes!
● But probably not what we want

→ need a new formalism!

3

Linearizability

spcl.inf.ethz.ch
@spcl_eth

 Explain the term
 History
 Thread projection
 Sequential history

● Each method call is immediately followed by its response
 Concurrent history

● Opposite of sequential history: Method calls can overlap!
 Well-formed history

● Per thread projection is sequential

4

Linearizability Terms

spcl.inf.ethz.ch
@spcl_eth

 Explain the term
 Equivalent histories

● Per thread projections are the same
 Legal history

● For every object x, H|x conforms with the specification of x
 Precedence

● M1 precedes M2 iff M1 response precedes M2 invocation
 Overlap

● Opposite of Precedence

5

Linearizability Terms

spcl.inf.ethz.ch
@spcl_eth

 A history is linearizable iff

– It can be turned into a legal sequential history H' by
● Dropping pending invocations
● Reordering events while observing the rule

– If a response preceded an invocation in H it must
precede it in H'

6

Linearizability

spcl.inf.ethz.ch
@spcl_eth

 Graphical Example

7

Linearizability – Example 1

Lock - fail

Lock - success

spcl.inf.ethz.ch
@spcl_eth

 Same example in written form:
A: l.lock()

B: l.lock()

A: l:fail

B: l:success

 We can reorder this as
A: l.lock()

A: l:fail

B: l.lock()

B: l:success

 No response preceded an invocation in H, so we don't need to worry about
“illegal” reordering

 But it does not conform to the specification of how a lock should behave!

8

Linearizability – Example 1

spcl.inf.ethz.ch
@spcl_eth

 Same example in written form:
A: l.lock()

B: l.lock()

A: l:fail

B: l:success

 We can reorder this as
B: l.lock()

B: l:success

A: l.lock()

A: l:fail

 Check: No response was moved before an invocation which it originally
preceded! (Since all responses came after all invocations)

 And it conforms to the specification! → History is linearizable

9

Linearizability – Example 1

spcl.inf.ethz.ch
@spcl_eth

 FIFO queue with operations enq(x)/void and deq()/x

 A: r.enq(x)

 A: r:void

 B: r.enq(y)

 A: r.deq()

 B: r:void

 A: r:y

What are the possible reordered histories?

Is any of them legal?

10

Linearizability – Example 2

spcl.inf.ethz.ch
@spcl_eth

If H|p and H|q for threads p and q is linearizable, H is linearizable?

If H|p and H|q for threads p and q is sequentially consistent, H is
linearizable?

If H|x and H|y for objects x and y is linearizable, H is linearizable?

(Assume the history only contains the given two threads/objects)

11

Linearizability – Quiz

	Slide 1
	Cache Organization – Cachelines & Sets
	Cache Organization – Lookup Procedure
	Quiz
	Slide 5
	Cache coherence
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

