
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session 2
Advanced MPI Concepts

spcl.inf.ethz.ch
@spcl_eth

 MPI is a widely used API to support message passing for HPC
 We saw that six functions are enough to write useful parallel

programs in SPMD style
 MPI_Init() / MPI_Finalize() --- required for initialization
 MPI_Send() / MPI_Recv() --- actually sending messages
 MPI_Comm_rank() / MPI_Comm_size() --- Who am I?

 We also looked at MPI collectives, e.g., MPI_Bcast()
 If six functions are enough, why are there ~300 in the standard?

 Optimization: Try to implement your own broadcast – should be hard to
beat MPI performance.

 Convenience: Do you really want to do this? Do you have too much time?
 Performance Portability: Do you think your Broadcast will also be fast on a

different cluster, which uses a different network?

2

Recap

spcl.inf.ethz.ch
@spcl_eth

 Idea: Circle with radius 1, in the middle of a rectangle with side
length 2.

 Area of circle segment is: (Pi*r^2)/4
 Area of dark rectangle is: r^2
 Pi = 4 * Area of circle / Area of rectangle
 Get the ratio of areas by putting many points randomly inside

the rectangle, and count how many are inside vs. outside of the
circle.

 Point p = (x,y), if x^2+y^2 <= 1 it is in the circle (hit) otherwise
not (miss)

3

Homework – Pi with MPI

spcl.inf.ethz.ch
@spcl_eth

 Each MPI rank simulates some point throws, in the end they are
added together

 Use MPI_Comm_size() to find out how many throws each ranks
should do (to get to a predefined total)

 Assign num_iters % commsize to some rank (are there better
ways?)

 Collect hits/misses in two variables
 Use MPI_Reduce() to get the sum of all hits

4

Homework – Pi with MPI

spcl.inf.ethz.ch
@spcl_eth

Looking at those serves two purposes:
 Telling you that they exist, so use it in your project (if suitable) to

get good performance
 The focus today is on concepts not so much on details, so not

every argument of every function will be explained
 The ideas behind them are important, so even if you don’t use

MPI you know where there might be some potential for
optimization

 MPI Datatypes
 Non-blocking collectives
 MPI one sided

5

Today – “Advanced” MPI features

spcl.inf.ethz.ch
@spcl_eth

 Basic Types: MPI_INT, MPI_CHAR, MPI_FLOAT, MPI_DOUBLE …
 Use them (and the count argument) to send the corresponding

types in C. Avoid MPI_BYTE if possible

 Now assume we have a 2D matrix of N*N doubles in C
 C does not have multi-dimensional arrays built in
 Can emulate it using 1D array.

mat[i,j] = m[i*N+j] (row major layout) or
mat[i, j] = m[j*N+i] (column major layout)

6

MPI Datatypes – Basic Types

double* m = malloc(N*N*sizeof(double));

// fill with random data
for (int i=0; i<N; i++)
 for (int j=0; i<N; i++)
 m[i*N+j] = rand();

spcl.inf.ethz.ch
@spcl_eth

 Now we want to send a column of our matrix stored in row-
major layout to another process

 This will send N separate small messages
 Each message has to be matched by the receiver, and usually

there is some overhead when sending small messages (i.e.,
minimum packet size on the network)

 So this will give bad performance! Do NOT do this!

7

MPI Datatypes – Small messages

for (int row=0; i<N; i++)
 MPI_Send(&m[row*N+col], 1, MPI_DOUBLE, peer, tag, comm);

spcl.inf.ethz.ch
@spcl_eth

 So how about packing the column data into a send buffer?

 Works better in many cases
 Sadly, many people do this in real applications

 We added an extra copy of our data! Copying is not free!
 But what if your network is very good with small messages?
 Maybe a hybrid approach would be best, i.e., send in chunks of

100 doubles? Or 500?
 Idea: Let MPI decide how to handle this! 8

MPI Datatypes – Manual Packing

double* buf = malloc(N*sizeof(double));
for (int row=0; i<N; i++) {
 sendbuf[row] = m[row*N+col];
}
MPI_Send(buf, 1, MPI_DOUBLE, peer, tag, comm);

spcl.inf.ethz.ch
@spcl_eth

 We need to tell MPI how the data is laid out
 MPI_Type_vector(count, blocklen, stride, basetype, newtype) will

create a new datatype, which consists of count instances of
blocklen times basetype, with a space of stride in between.

 Before a new type can be used it has to be committed with
MPI_Type_commit(MPI_Datatype* newtype)

9

MPI Datatypes – Type creation

MPI_Datatype newtype;
MPI_Type_vector(N, blocklen, N, MPI_DOUBLE, &newtype);
MPI_Type_commit(&newtype);
MPI_Send(m, 1, newtype, peer, tag, comm);

stride = 4
count = 5
blocklen = 1

spcl.inf.ethz.ch
@spcl_eth

 MPI Datatypes can are composable! - So you can create a vector
of a vector datatype! (Useful for 3D matrices!)

 The MPI_Type_vector() is not the only type creation function
 MPI_Type_indexed() allows non-uniform strides
 MPI_Type_struct() allows to combine different datatypes into one “object”
 See MPI standard for complete list/definition if you need them!

10

MPI Datatypes – Composable

spcl.inf.ethz.ch
@spcl_eth

11

Datatypes - Performance

Manual Packing MPI Datatypes

Schneider/Gerstenberger: Application-oriented ping-pong benchmarking: how
to assess the real communication overheads

spcl.inf.ethz.ch
@spcl_eth

 We saw nonblocking versions of Send and Receive last week
 They allow us to do something useful (computation) while we

wait for data to be transmitted
 MPI also defines nonblocking collectives
 Example: MPI_Ialltoall(void* senbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, MPI_Datatype recvtype,
MPI_Comm comm, MPI_Request * request)

 Same as MPI_Alltoall, except for the request handle!
 We can use MPI_Test() / MPI_Wait() / MPI_Waitall() on this

handle, just as we did with nonblocking point-to-point
communication

 Many MPI implementations do not progress if you do not call
MPI functions, i.e., MPI_Test()!

12

Nonblocking Collectives

spcl.inf.ethz.ch
@spcl_eth

 Message passing is not the only programming model supported
by MPI

 Since MPI version two it also supports one-sided
communication, so only one process has to “do something” to
transfer data

 The one-sided interface changed substantially in MPI-3, be
aware of this when searching for documentation on your own

 Make sure you are using an MPI implementation which supports
MPI-3 if you want to use the features described here, i.e., Open
MPI does not!

13

MPI-3 One-sided

spcl.inf.ethz.ch
@spcl_eth

 The semantics of message passing imply
 Messages are either buffered at the receiver until matching receive is

called, this means the entire message has to be copied
 Or sender waits until the receiver has called a matching receive, this

means time is “wasted” where nothing is transmitted even though the data
is available

 Incoming messages need to be matched against “posted” receives. This is
often implemented by traversing a queue of messages / stored receive info

 Most of this is done in software on the CPU
 Most modern network cards support RDMA (Remote direct

memory access)
 Data can be transferred to a remote memory address
 The remote node does not need to do anything

 The one-sided (or RMA) programming model is a better match
for modern hardware, and gets rid of some of the overheads of
message passing

 But is often harder to program
14

Benefits of the one-sided programming model

spcl.inf.ethz.ch
@spcl_eth

15

MPI-3 One-sided Performance (MILC Code)

Gerstenberger/Besta/Hoefler: Enabling Highly-Scalable Remote Memory Access
Programming with MPI-3 One Sided

spcl.inf.ethz.ch
@spcl_eth

 Data is transferred with Get() and Put() calls
 Before we can access the memory of a remote node, this node

has to expose a memory region
 In MPI terms such a region is called an MPI_Window
 We can either create a window from already allocated/used

memory
MPI_Win_create(void* base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win* win)

 Or let MPI allocate new memory for us (use this if you have a
choice)
MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, void** baseptr, MPI_Win* win)

 Window creation is collective!
 Third option: attach memory to an existing window (slow)

16

MPI One-Sided Concepts - Window

spcl.inf.ethz.ch
@spcl_eth

 MPI RMA defines “epochs”
 Before communicating we open an epoch
 Then we use Put()/Get()
 Then we close the epoch
 Only now can we safely access the data in our window!

17

MPI One-Sided Concepts - Synchronization

spcl.inf.ethz.ch
@spcl_eth

 The simplest way to open/close an epoch is with
MPI_Fence(int assert, MPI_Win win)

 A fence closes the previously opened epoch (if there was one)
and opens a new one in a single call

18

MPI One-Sided – Fence Synchronization

MPI_Win win;
int data;
If (rank == 0) data = 42;
MPI_Win_create(&data, sizeof(int), 1, MPI_INFO_NULL, comm, &win);
MPI_Win_fence(0, win);
if (rank != 0)
 MPI_Get(&data, 1, MPI_INT, 0, 0, 1, MPI_INT, &win);
MPI_Win_fence(0, win);
MPI_Win_free(&win);

spcl.inf.ethz.ch
@spcl_eth

 While easy to program, sometimes fence synchronization does
too much
 It synchronizes the window for all ranks in the communicator
 It does not differentiate between origin (caller of put/get) and target (peer in

those calls) processes
 Often as expensive as doing an MPI_Barrier()

 MPI_Win_start() / MPI_Win_complete() start and end an epoch
on the origin

 MPI_Win_post() / MPI_Win_wait() start and end an epoch on the
target

 start/post call take not only the window, but also an MPI_Group
argument, this specifies which ranks are included in the
communication

 Groups can be created/manipulated by the MPI_Group_XXX()
and MPI_Comm_group() functions

19

MPI One-Sided – Post/Start/Complete/Wait

spcl.inf.ethz.ch
@spcl_eth

 In fence and PSCW synchronization, the target plays an active
role, i.e., calls a synchronization function

 Therefore these modes are called “Active Target Mode”
 There is also a “Passive Target Mode” where the target does not

need to do anything
 MPI_Win_lock_all() allows us to access the window of all other ranks (cf.

Fence)
 MPI_Win_lock() allows us to access the window of a specific rank (cf.

PSCW)
 Locks can be shared or exclusive
 Epoch opened with lock/lock_all is closed via unlock/unlock_all

 In passive target mode we can also use MPI_Win_flush() to
finish all outstanding operations to a specific target rank

20

MPI One-Sided – Lock/Unlock

	Slide 1
	Recap
	Homework – Pi with MPI
	Homework – Pi with MPI
	Today – “Advanced” MPI features
	MPI Datatypes – Basic Types
	MPI Datatypes – Small messages
	MPI Datatypes – Manual Packing
	MPI Datatypes – Type creation
	MPI Datatypes – Composable
	Datatypes - Performance
	Nonblocking Collectives
	MPI-3 One-sided
	Benefits of the one-sided programming model
	MPI-3 One-sided Performance (MILC Code)
	MPI One-Sided Concepts - Window
	MPI One-Sided Concepts - Synchronization
	MPI One-Sided – Fence Synchronization
	MPI One-Sided – Post/Start/Complete/Wait
	MPI One-Sided – Lock/Unlock

