
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC Recitation Session 2
Advanced MPI Concepts

spcl.inf.ethz.ch
@spcl_eth

 MPI is a widely used API to support message passing for HPC
 We saw that six functions are enough to write useful parallel

programs in SPMD style
 MPI_Init() / MPI_Finalize() --- required for initialization
 MPI_Send() / MPI_Recv() --- actually sending messages
 MPI_Comm_rank() / MPI_Comm_size() --- Who am I?

 We also looked at MPI collectives, e.g., MPI_Bcast()
 If six functions are enough, why are there ~300 in the standard?

 Optimization: Try to implement your own broadcast – should be hard to
beat MPI performance.

 Convenience: Do you really want to do this? Do you have too much time?
 Performance Portability: Do you think your Broadcast will also be fast on a

different cluster, which uses a different network?

2

Recap

spcl.inf.ethz.ch
@spcl_eth

 Idea: Circle with radius 1, in the middle of a rectangle with side
length 2.

 Area of circle segment is: (Pi*r^2)/4
 Area of dark rectangle is: r^2
 Pi = 4 * Area of circle / Area of rectangle
 Get the ratio of areas by putting many points randomly inside

the rectangle, and count how many are inside vs. outside of the
circle.

 Point p = (x,y), if x^2+y^2 <= 1 it is in the circle (hit) otherwise
not (miss)

3

Homework – Pi with MPI

spcl.inf.ethz.ch
@spcl_eth

 Each MPI rank simulates some point throws, in the end they are
added together

 Use MPI_Comm_size() to find out how many throws each ranks
should do (to get to a predefined total)

 Assign num_iters % commsize to some rank (are there better
ways?)

 Collect hits/misses in two variables
 Use MPI_Reduce() to get the sum of all hits

4

Homework – Pi with MPI

spcl.inf.ethz.ch
@spcl_eth

Looking at those serves two purposes:
 Telling you that they exist, so use it in your project (if suitable) to

get good performance
 The focus today is on concepts not so much on details, so not

every argument of every function will be explained
 The ideas behind them are important, so even if you don’t use

MPI you know where there might be some potential for
optimization

 MPI Datatypes
 Non-blocking collectives
 MPI one sided

5

Today – “Advanced” MPI features

spcl.inf.ethz.ch
@spcl_eth

 Basic Types: MPI_INT, MPI_CHAR, MPI_FLOAT, MPI_DOUBLE …
 Use them (and the count argument) to send the corresponding

types in C. Avoid MPI_BYTE if possible

 Now assume we have a 2D matrix of N*N doubles in C
 C does not have multi-dimensional arrays built in
 Can emulate it using 1D array.

mat[i,j] = m[i*N+j] (row major layout) or
mat[i, j] = m[j*N+i] (column major layout)

6

MPI Datatypes – Basic Types

double* m = malloc(N*N*sizeof(double));

// fill with random data
for (int i=0; i<N; i++)
 for (int j=0; i<N; i++)
 m[i*N+j] = rand();

spcl.inf.ethz.ch
@spcl_eth

 Now we want to send a column of our matrix stored in row-
major layout to another process

 This will send N separate small messages
 Each message has to be matched by the receiver, and usually

there is some overhead when sending small messages (i.e.,
minimum packet size on the network)

 So this will give bad performance! Do NOT do this!

7

MPI Datatypes – Small messages

for (int row=0; i<N; i++)
 MPI_Send(&m[row*N+col], 1, MPI_DOUBLE, peer, tag, comm);

spcl.inf.ethz.ch
@spcl_eth

 So how about packing the column data into a send buffer?

 Works better in many cases
 Sadly, many people do this in real applications

 We added an extra copy of our data! Copying is not free!
 But what if your network is very good with small messages?
 Maybe a hybrid approach would be best, i.e., send in chunks of

100 doubles? Or 500?
 Idea: Let MPI decide how to handle this! 8

MPI Datatypes – Manual Packing

double* buf = malloc(N*sizeof(double));
for (int row=0; i<N; i++) {
 sendbuf[row] = m[row*N+col];
}
MPI_Send(buf, 1, MPI_DOUBLE, peer, tag, comm);

spcl.inf.ethz.ch
@spcl_eth

 We need to tell MPI how the data is laid out
 MPI_Type_vector(count, blocklen, stride, basetype, newtype) will

create a new datatype, which consists of count instances of
blocklen times basetype, with a space of stride in between.

 Before a new type can be used it has to be committed with
MPI_Type_commit(MPI_Datatype* newtype)

9

MPI Datatypes – Type creation

MPI_Datatype newtype;
MPI_Type_vector(N, blocklen, N, MPI_DOUBLE, &newtype);
MPI_Type_commit(&newtype);
MPI_Send(m, 1, newtype, peer, tag, comm);

stride = 4
count = 5
blocklen = 1

spcl.inf.ethz.ch
@spcl_eth

 MPI Datatypes can are composable! - So you can create a vector
of a vector datatype! (Useful for 3D matrices!)

 The MPI_Type_vector() is not the only type creation function
 MPI_Type_indexed() allows non-uniform strides
 MPI_Type_struct() allows to combine different datatypes into one “object”
 See MPI standard for complete list/definition if you need them!

10

MPI Datatypes – Composable

spcl.inf.ethz.ch
@spcl_eth

11

Datatypes - Performance

Manual Packing MPI Datatypes

Schneider/Gerstenberger: Application-oriented ping-pong benchmarking: how
to assess the real communication overheads

spcl.inf.ethz.ch
@spcl_eth

 We saw nonblocking versions of Send and Receive last week
 They allow us to do something useful (computation) while we

wait for data to be transmitted
 MPI also defines nonblocking collectives
 Example: MPI_Ialltoall(void* senbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, MPI_Datatype recvtype,
MPI_Comm comm, MPI_Request * request)

 Same as MPI_Alltoall, except for the request handle!
 We can use MPI_Test() / MPI_Wait() / MPI_Waitall() on this

handle, just as we did with nonblocking point-to-point
communication

 Many MPI implementations do not progress if you do not call
MPI functions, i.e., MPI_Test()!

12

Nonblocking Collectives

spcl.inf.ethz.ch
@spcl_eth

 Message passing is not the only programming model supported
by MPI

 Since MPI version two it also supports one-sided
communication, so only one process has to “do something” to
transfer data

 The one-sided interface changed substantially in MPI-3, be
aware of this when searching for documentation on your own

 Make sure you are using an MPI implementation which supports
MPI-3 if you want to use the features described here, i.e., Open
MPI does not!

13

MPI-3 One-sided

spcl.inf.ethz.ch
@spcl_eth

 The semantics of message passing imply
 Messages are either buffered at the receiver until matching receive is

called, this means the entire message has to be copied
 Or sender waits until the receiver has called a matching receive, this

means time is “wasted” where nothing is transmitted even though the data
is available

 Incoming messages need to be matched against “posted” receives. This is
often implemented by traversing a queue of messages / stored receive info

 Most of this is done in software on the CPU
 Most modern network cards support RDMA (Remote direct

memory access)
 Data can be transferred to a remote memory address
 The remote node does not need to do anything

 The one-sided (or RMA) programming model is a better match
for modern hardware, and gets rid of some of the overheads of
message passing

 But is often harder to program
14

Benefits of the one-sided programming model

spcl.inf.ethz.ch
@spcl_eth

15

MPI-3 One-sided Performance (MILC Code)

Gerstenberger/Besta/Hoefler: Enabling Highly-Scalable Remote Memory Access
Programming with MPI-3 One Sided

spcl.inf.ethz.ch
@spcl_eth

 Data is transferred with Get() and Put() calls
 Before we can access the memory of a remote node, this node

has to expose a memory region
 In MPI terms such a region is called an MPI_Window
 We can either create a window from already allocated/used

memory
MPI_Win_create(void* base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win* win)

 Or let MPI allocate new memory for us (use this if you have a
choice)
MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, void** baseptr, MPI_Win* win)

 Window creation is collective!
 Third option: attach memory to an existing window (slow)

16

MPI One-Sided Concepts - Window

spcl.inf.ethz.ch
@spcl_eth

 MPI RMA defines “epochs”
 Before communicating we open an epoch
 Then we use Put()/Get()
 Then we close the epoch
 Only now can we safely access the data in our window!

17

MPI One-Sided Concepts - Synchronization

spcl.inf.ethz.ch
@spcl_eth

 The simplest way to open/close an epoch is with
MPI_Fence(int assert, MPI_Win win)

 A fence closes the previously opened epoch (if there was one)
and opens a new one in a single call

18

MPI One-Sided – Fence Synchronization

MPI_Win win;
int data;
If (rank == 0) data = 42;
MPI_Win_create(&data, sizeof(int), 1, MPI_INFO_NULL, comm, &win);
MPI_Win_fence(0, win);
if (rank != 0)
 MPI_Get(&data, 1, MPI_INT, 0, 0, 1, MPI_INT, &win);
MPI_Win_fence(0, win);
MPI_Win_free(&win);

spcl.inf.ethz.ch
@spcl_eth

 While easy to program, sometimes fence synchronization does
too much
 It synchronizes the window for all ranks in the communicator
 It does not differentiate between origin (caller of put/get) and target (peer in

those calls) processes
 Often as expensive as doing an MPI_Barrier()

 MPI_Win_start() / MPI_Win_complete() start and end an epoch
on the origin

 MPI_Win_post() / MPI_Win_wait() start and end an epoch on the
target

 start/post call take not only the window, but also an MPI_Group
argument, this specifies which ranks are included in the
communication

 Groups can be created/manipulated by the MPI_Group_XXX()
and MPI_Comm_group() functions

19

MPI One-Sided – Post/Start/Complete/Wait

spcl.inf.ethz.ch
@spcl_eth

 In fence and PSCW synchronization, the target plays an active
role, i.e., calls a synchronization function

 Therefore these modes are called “Active Target Mode”
 There is also a “Passive Target Mode” where the target does not

need to do anything
 MPI_Win_lock_all() allows us to access the window of all other ranks (cf.

Fence)
 MPI_Win_lock() allows us to access the window of a specific rank (cf.

PSCW)
 Locks can be shared or exclusive
 Epoch opened with lock/lock_all is closed via unlock/unlock_all

 In passive target mode we can also use MPI_Win_flush() to
finish all outstanding operations to a specific target rank

20

MPI One-Sided – Lock/Unlock

	Slide 1
	Recap
	Homework – Pi with MPI
	Homework – Pi with MPI
	Today – “Advanced” MPI features
	MPI Datatypes – Basic Types
	MPI Datatypes – Small messages
	MPI Datatypes – Manual Packing
	MPI Datatypes – Type creation
	MPI Datatypes – Composable
	Datatypes - Performance
	Nonblocking Collectives
	MPI-3 One-sided
	Benefits of the one-sided programming model
	MPI-3 One-sided Performance (MILC Code)
	MPI One-Sided Concepts - Window
	MPI One-Sided Concepts - Synchronization
	MPI One-Sided – Fence Synchronization
	MPI One-Sided – Post/Start/Complete/Wait
	MPI One-Sided – Lock/Unlock

