Design of Parallel and High-Performance Computing

Fall 2014

Lecture: Roofline

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider & Arnamoy Bhattacharyya

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Operational Intensity

Definition: Given a program P, assume cold (empty) cache

Operational intensity:
$$I(n) = \frac{W(n)}{Q(n)}$$
 #flops (input size n)

#bytes transferred cache \leftrightarrow memory (for input size n)

Examples: Determine asymptotic bounds on I(n)

• Vector sum: y = x + y O(1)

Matrix-vector product: y = Ax
O(1)

■ Fast Fourier transform O(log(n))

Matrix-matrix product: C = AB + C
O(n)

Example MVM: y = Ax + y

- Number of flops?
- Number of compulsory misses (cold cache)?
- Upper bound on the operational intensity?

Roofline Measurements

- Tool developed in our group (G. Ofenbeck, R. Steinmann, V. Caparros-Cabezas, D. Spampinato)
- Example plots follow
- Get bounds on I:
 - daxpy: $y = \alpha x + y$
 - dgemv: y = Ax + y
 - dgemm: C = AB + C
 - FFT

Roofline Measurements

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, sequential Cold cache

What happens when we go to parallel code?

Roofline Measurements

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, parallel Cold cache

What happens when we go to warm cache?

·c

Core i7 Sandy Bridge, 6 cores Code: Intel MKL, sequential Warm cache

Roofline Measurements

Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable