Design of Parallel and High-Performance
Computing

Fall 2013
Lecture: Linearizability

Motivational video: https://www.youtube.com/watch?v=gx2dRIQXnbs

Instructor: Torsten Hoefler & Markus Piischel
TAs: Timo Schneider

ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Review of last lecture

B Cache-coherence is not enough!
® Many more subtle issues for parallel programs!

® Memory Models
® Sequential consistency
" Why threads cannot be implemented as a library *
" Relaxed consistency models
" x86 TLO+CC case study

B Complexity of reasoning about parallel objects
= Serial specifications (e.g., pre-/postconditions)
® Started to lock things ...

Peer Quiz

B Instructions:
® Pick some partners (locally) and discuss each question for 2 minutes
® We then select a random student (team) to answer the question

B What are the problems with sequential consistency?
" |sit practical? Explain!
" s it sufficient for simple parallel programming? Explain!
® How would you improve the situation?

B How could memory models of practical CPUs be described?
" Is Intel’s definition useful?
®" Why would one need a better definition?
® Threads cannot be implemented as a library? Why does Pthreads work?

DPHPC Overview

DPHPC
* locality parallelism
2 P
=} P
g -caches vector ISA shared memory distributed memory
5 - memory hierarchy
2L | cache coherency f
o3 I 1
P | __memory | distributed
a " models ' " algorithms '
(&)
= group commu-
o lock free nications
wait free
— Amdahl's and Gustafson's law |

3 L memory 11 PRAM 11 LogP |
el T 1T LI 1
g o-P

1/0 complexity

balance principles | balance principles Il

Little's Law scheduling

Goals of this lecture

B Queue:
" Problems with the locked queue
" Wait-free two-thread queue

Linearizability
® |ntuitive understanding (sequential order on objects!)
® Linearization points
" Linearizable executions
" Formal definitions (Histories, Projections, Precedence)

Linearizability vs. Sequential Consistency
" Modularity

Maybe: lock implementations

Lock-based queue

class Queue {

int head, tail;
std::vector<Item> items;

std::mutex lock;

public:
Queue(int capacity) {
head = tail = 0;

items.resize(capacity);

}
%

Lock-based queue

class Queue {

public:
yoid ena(ltem x

if((tail+1)%items.size()==head) {

throw FullException;

}

itemsftail] = x;

tail = (tail+1)%items.size();
}

Jtem deg().{

b [<std:: >
if(tail == head) {
throw FullException;
}
Item item = items[head];
head = (head+1)%items.size();
return item;
}
1]

Example execution

A: gq.deq(): x

B: g.enq(x)

“sequential
behavior”

Correctness

B |s the locked queue correct?
" Yes, only one thread has access if locked correctly
® Allows us again to reason about pre- and postconditions
= Smells a bit like sequential consistency, no?
B Class question: What is the problem with this approach?
" Same as for SC*

Threads working at the same time?

B Same thing (concurrent queue)

B For simplicity, assume only two threads

® Thread A calls only enq() head
® Thread B calls only deq() .
tail
10

Wait-free 2-Thread Queue

Wait-free 2-Thread Queue

queue[tail]
=z

Wait-free 2-Thread Queue

Is this correct?

B Hard to reason about correctness

B What could go wrong?

void enq(ltem x) { Item deq() {
if((tail+1)%items.size() == head) { if(tail == head) {
throw FullException; throw EmptyException;
} }
itemsl[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); head = (head+1)%items.size();

} return item;

® Nothing (at least no crash)
" Yet, the semantics of the queue are funny (define “FIFO” now)!

Serial to Concurrent Specifications

B Serial specifications are complex enough, so lets stick to them
® Define invocation and response events (start and end of method)
" Extend the sequential concept to concurrency: linearizability

B Each method should “take effect”
" Instantaneously
® Between invocation and response events

B A concurrent object is correct if its “sequential” behavior is correct
® Called “linearizable”

method execution

—

Linearization point = when method takes effect

Linearizability

B Sounds like a property of an execution ...

B An object is called linearizable if all possible executions on the object
are linearizable

B Says nothing about the order of executions!

void enq(ltem x) { Item deq() {
Exa m Ie std::lock_guard<std::mutex> I(lock) std::lock_guard<std::mutex> I(lock)
p if((tail+1) %items.size() == head) { if(tail == head) {
throw FullException; throw EmptyException;
} }
items[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); < head = (head+1)%items.size();
} \\ J

o~
linearization points

void enq(ltem x) { Item deq() {
Exa m p I e std::lock_guard<std::mutex> I(lock) std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) { if(tail == head) {
throw FullException; throw EmptyException;

} }
items[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); < head = (head+1)%items.size();

) s

—
linearization points

Example

void enq(Item x) {
std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) {
throw FullException;
}
itemstail] = x;
tail = (tail+1)%items.size(); <

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head];
head = (head+1)%items.size();

g.enq(x)

q.enq(y)

linearization points

void enq(Item x) {
std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) {
throw FullException;
} }
items[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); < head = (head+1)%items.size();

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;

Example

linearization points

g.enq(x)

q.enq(y) q.deq(x)

Example

@

void enq(Item x) {
std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) {
throw FullException;
}
itemsl[tail] = x;
tail = (tail+1) %items.size(); <

q.enq(x)

q.enq(y)

q.deq(x)

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head];
head = (head+1)%items.size();

linearization points

q.deq(y)

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;

void enq(Item x) {
std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) {
throw FullException;
} }
itemsl[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); < head = (head+1)%items.size();

Example

linearization points

q.¢nq(x)

q.en|(y)

Example

@

void enq(ltem x) {
std::lock_guard<std::mutex> I(lock)
if((tail+1)%items.size() == head) {
throw FullException;
}
itemsl[tail] = x;
tail = (tail+1)%items.size(); <

Item deq() {
std::lock_guard<std::mutex> I(lock)
if(tail == head) {
throw EmptyException;
}
Item item = items[head];
head = (head+1)%items.size();

q.¢nq(x)

q.en|(y)

}

~

linearization points

s

Example 2

Example 2

)
s ———

Example 2

m q.deq(y)

Example 2

@

< &

&

Example 2

¥
o
&

Example 2

@

€

Example 3

:

Example 3 Example 3

N4
o[e]e] o[e]e]

CEEEETTEE— || TR

| |

Example 3 Example 3

Example 4 Example 4

Example 4

q.deq(y)

Example 4

@

m a.deq(y)

) €
e —

Example 4

Is the lock-free queue linearizable?

H A) Only two threads, one calls only deq() and one calls only enq()?

void enq(ltem x) { Item deq() {

if((tail+1) %items.size() == head) { if(tail == head) {
throw FullException; throw EmptyException;
})
itemsl[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); head = (head+1)%items.size();
} return item;

}

B B) Only two threads but both may call enq() or deq() independently
B C) An arbitrary number of threads, but only one calls enq()
® D) An arbitrary number of threads can call enq() or deq()

B E) If it’s linearizable, where are the linearization points?
® Remark: typically executions are not constrained, so this is NOT linearizable

Read/Write Register Example

B Assume atomic update to a single read/write register!

& &

Read/Write Register Example

B Assume atomic update to a single read/write register!

) &)

write(1) already
happened

Read/Write Register Example

read(0)

write(1) already
happened

Read/Write Register Example

B Assume atomic update to a single read/write register!

write(1) already
happened

Read/Write Register Example

B Assume atomic update to a single read/write register!

) &)

write(1) already
happened

read(1)

write(1) already
happened

Read/Write Register Example

B Assume atomic update to a single read/write register!

€)
e

Read/Write Register Example

B Assume atomic update to a single read/write register!

<
—

Read/Write Register Example

B Assume atomic update to a single reay

read(1)

Read/Write Register Example

) €1
—_—

Read/Write Register Example

Read/Write Register Example

) &),

About Executions

® Why?
" Can’t we specify the linearization point of each operation statically without
describing an execution?

® Not always
" In some cases, the linearization point depends on the execution
Imagine a “check if one should lock” (not recommended!)

B Define a formal model for executions!

Properties of concurrent method executions

B Method executions take time
" May overlap

B Method execution = operation
® Defined by invocation and response events

B Duration of method call
® Interval between the events

pending

l g.deq(): x |

time
>

invocation response

Formalization - Notation

B Invocation

A: q.enq(x<)
/7 f r\\

thread object method arguments

® Response
A: g:void A: g:FullException()
7 A R 7 A W
P RN N BN
thread object result thread object exception

" Question: why is the method name not needed in the response?
Method is implicit (correctness criterion)!

Concurrency

B A concurrent system consists of a collection of sequential threads P,

B Threads communicate via shared objects
For now!

History

B Describes an execution
" Sequence of invocations and responses
- H=

e T mvocat i
A: q:void > |nvocation and response match if

® thread names are the same

A: g.enq(b) .
B: p.enq(c) objects are the same
B: p:void

. .
B: q.deq() Remember: Method name is implicit!
B: g:a

Projections on Threads

B Threads subhistory H|P (“H at P”)
" Subsequences of all events in H whose thread name is P

H= H|A= H|B=

A: g.enq(a) A: g.enq(a)

A: g:void A: g:void

A: g.enq(b) A: g.enq(b)

B: p.enq(c) B: p.enq(c)
B: p:void B: p:void
B: g.deq() B: q.deq()

B: g:a B: g:a

Projections on Objects

B Objects subhistory H|o (“H at 0”)
" Subsequence of all events in H whose object name is o

H= Hlp= Hlg=

A: g.enq(a) A: g.enq(a)
A: g:void A: g:void
A: g.enq(b) A: g.enq(b)
B: p.enq(c) B: p.enq(c)

B: p:void B: p:void

B: g.deq() B: q.deq()
B: g:a B: g:a

Sequential Histories

B A history H is sequential if

y
5 pacic
e
<'B: g.enq()

B A history H is concurrent if
" |tis not sequential

" The first event of H is an invocation
® Each invocation (except possibly
the last) is immediately followed

by a matching response

" Each response is immediately

followed by an invocation

Method calls of different threads

do not interleave

\ﬁstory is sequential if
Well-formed histories \

® The first event of H is an invocation
® Each invocation (except possibly
B per-thread projections must be sequential the last) is immediately followed
by a matching response
® Each response is immediately
followed by an invocation

H= H|A=

A: g.enq(x) A: g.enq(x)

B: p.enq(y) A: q:void

B: p:void

B: g.deq() H|B=

A: g:void B: p.enq(y)

B: g:x B: p:void
B: g.deq()
B: g:x

Equivalent histories

B per-thread projections must be the same

Legal Histories

B Sequential specification allows to describe what behavior we expect
and tolerate
" When is a single-thread, single-object history legal?

h= G= HIA=G|A= B Recall: Example
A: g.enq(x) A: g.enq(x) A: g.enq(x) * Preconditions and Postconditions
B: p.enq(y) B: p.enq(y) A: g:void * Many others exist!
B: p:void A: g:void
B: q.deq() B: p:void H|B=G|B= B Asequential (multi-object) history H is legal if
A: q:void B: g.deq() B: p.enq(y) " For every object x
B: q:x B: g:x B: p:void ® H|x adheres to the sequential specification for x
B: g.deq() B Example: FIFO queue
B: g:x " Correct internal state
Order of removal equals order of addition
® Full and Empty Exceptions
Precedence Precedence vs. Overlapping
B Non-precedence = overlapping
A: g.enq(x) A method execution precedes A: g.enq(x) Some method executions
B: g.enq(y) another if response event B: g.enq(y) overlap with others
B: g:void precedes invocation event B: g:void A: q.enq(x)
A: g:void A: g:void
B: g.deq() B: g.deq()
B: g:x B: g:x B: g.enq(

A: qenq(xi |B: q.deq()l

Complete Histories

B A history H is complete
® If all invocations are matched with a response

H= G= I=
A: g.enq(x) A: g.enq(x) A: g.enq(x)
B: p.enq(y) B: p.enq(y) B: p.enq(y)
B: p:void B: p:void B: p:void
B: g.deq() B: g.deq() B: g.deq()
A: g:void A: g:void A: g:void
B: g:x A: g.enq(z) B: g:x

B: g:x B: g.deq()

Precedence Relations

B Given history H

Method executions m;and m, in H
= m,—y, M, (M, precedes m, in H) if
= Response event of m, precedes invocation event of m,

® Precedence relation m, —, m, is a
= Strict partial order on method executions
Irreflexive, antisymmetric, transitive

B Considerations
® Precedence forms a total order if H is sequential
® Unrelated method calls —, may overlap , concurrent

Definition Linearizability

B A history H induces a strict partial order <, on operations

= m,<,m,if my—,m,

B A history H is linearizable if
" H can be extended to a complete history H’
by appending responses to pending operations or dropping pending operations
® H’isequivalent to some legal sequential history S and

- <w c <s
B Sis a linearization of H

B Remarks:
" For each H, there may be many valid extensions to H’
" For each extension H’, there may be many S
" Interleaving at the granularity of methods

Ensuring <, €<
B Find an S that contains H’

= {a—>c¢c,b—oc}

<,
< = {a—b,a—>c,b—c}

Example

A g.enqg(3)

Example

A g.enqg(3)

: Complete this
pending
invocation

Example

A
omplete this

pending
invocation

Example

A g.eng(3)
discard this one

e

A qg:void

ﬁ;

< gaena > <ader 4:>: 5. :iﬁiu"

Example

A g.enqg(3)

discard this one
A q:void

> >
e—e—

Example
A g.enq(3) What would be an equivalent
sequential history?
A qg:void

S rTroE———

et >
—e——

Example
A g.enqg(3)
A g.eng(3)
A q:void
A qg:void

Example
Equivalent sequential history
A g.enqg(3)
A g.eng(3)
A q:void
A qg:void

Remember: Linearization Points

B |dentify one atomic step where a method “happens” (effects become
visible to others)
® Critical section
® Machine instruction (atomics, transactional memory ...)

® Does not always succeed
" One may need to define several different steps for a given method
" If so, extreme care must be taken to ensi»==e-/postconditions

. . ing wait-free.
® All possible executi yow assuming 2 2 linearizable

<:
pwo-thread aueve” %,
void enq(item x) { Item deq() { ?396
M = B 6
if((tail+1)%items.size() == head) { if(tail == head) { 2
throw FullException; throw EmptyException; 00’9
} } s
itemsl[tail] = x; Item item = items[head];
tail = (tail+1)%items.size(); head = (head+1)%items.size();
} return item;

Composition

B His linearizable iff for every object x, H|x is linearizable!
® Corrollary: Composing linearizable objects results in a linearizable system

B Reasoning
® Consider linearizability of objects in isolation

B Modularity
= Allows concurrent systems to be constructed in a modular fashion
® Compose independently-implemented objects

Linearizability vs. Sequential Consistency

B Sequential consistency
® Correctness condition
" For describing hardware memory interfaces
® Remember: not actual ones!

B Linearizability
® Stronger correctness condition
® For describing higher-level systems composed from linearizable
components
Requires understanding of object semantics

Map linearizability to sequential consistency

B Variables with read and write operations
® Sequential consistency

B Objects with a type and methods
" Linearizability

B Map sequential consistency ¢ linearizability
" _ Reduce data types to variables with read and write operations
" — Model variables as data types with read() and write() methods

B Remember: Sequential consistency

= A history H is sequential if it can be extended to H' and H’ is equivalent to
some sequential history S

= Note: Precedence order (<, C <) does not need to be maintained

Example

Example

Example

]

q.deq(y)

|

Example

@ Linearizable?

m q.deq(y)

&

Example

@ Linearizable?

q.deq(y)

=

]

Example

@ Linearizable?

€2

Example

@ Sequentially consistent?

:

q.deq(y)

]

e e———

Properties of sequential consistency

B Theorem: Sequential consistency is not compositional
H=

A: p.enq(x)
A: p:void Compositional would mean:

B: gq.enq(y) “If H| p and H| q are sequentially consistent,

B: g:void then H is sequentially consistent!”

A: g.enq(x)

A: g:void This is not guaranteed for SC schedules!
B: p.enq(y)

B: p:void See following example!

A: p.deq()

A: piy

B: g.deq()

B: g:x

FIFO Queue Example

€

—r—

FIFO Queue Example

e

e e———

FIFO Queue Example

mm pdealy

€ €D)

History H

e e———

H|p Sequentially Consistent

Boe

mrre———

H|g Sequentially Consistent

FATATo

e e———

Ordering imposed by p Ordering imposed by q

p.deq(y)

p-enq(x)

Ordering imposed by both Combining orders

q.enq(y)

q.enq(y) p-enq(yl q_-de~|(X)
—— A=A _

\

Example in our notation Example in our notation

B Sequential consistency is not compositional - H|p B Sequential consistency is not compositional - H|q
H= H|p= (HIp)|A= (Hlp)|B= H= Hlg= (Hla)|A= (Hla)|B=
A: p.enq(x) A: p.enq(x) A: p.enq(x) B: p.enq(y) A: p.enq(x) B: g.enq(y) A: g.enqg(x) B: g.enq(y)
A: p:void A: p:void A: p:void B: p:void A: p:void B: g:void A: g:void B: g:void
B: g.enq(y) B: p.enq(y) A: p.deq() B: g.enq(y) A: g.enq(x) B: g.deq()
B: g:void B: p:void A: piy B: g:void A: g:void B: q:x
A: g.enq(x) A: p.deq() A: g.enq(x) B: gq.deq()
A: g:void A: piy A: g:void B: g:x
B: p.enq(y) B: p.enq(y)
B: p:void B: p:void
A: p.deq()) , , A: p.deq()) ,)
A pry H|p is sequentially consistent! A pry H|q is sequentially consistent!
B: q.deq() B: q.deq()

B: q:x B: q:x

Example in our notation

B Sequential consistency is not compositional

H= HIA= H|B=

A: p.eng(x) A: p.enq(x) B: g.enq(y)

A: p:void A: p:void B: g:void

B: g.enq(y) A: g.enq(x) B: p.enq(y)

B: g:void A: g:void B: p:void

A: g.enq(x) A: p.deq() B: g.deq()

A: g:void A: piy B: g:x

B: p.enq(y)

B: p:void

A: p.deq()))) |
A: piy H is not sequentially consistent!
B: g.deq()

B: g:x

Correctness: Linearizability

B Sequential Consistency
® Not composable
® Harder to work with
® Good (simple) way to think about hardware models
Few assumptions (no semantics or time)

B We will use linearizability in the remainder of this course
unless stated otherwise
Consider routine entry and exit

Study Goals (Homework)

B Define linearizability with your own words!
B Describe the properties of linearizability!

B Explain the differences between sequential consistency and
linearizability!

B Given a history H
" |dentify linearization points
" Find equivalent sequential history S
® Decide and explain whether H is linearizable
" Decide and explain whether H is sequentially consistent
" Give values for the response events such that the execution is linearizable

Language Memory Models

B Which transformations/reorderings can be applied to a program

B Affects platform/system
= Compiler, (VM), hardware

B Affects programmer
" What are possible semantics/output
® Which communication between threads is legal?

B Without memory model
® Impossible to even define “legal” or “semantics” when data is accessed
concurrently

® A memory model is a contract
" Between platform and programmer

History of Memory Models

B Java’s original memory model was broken [1]
= Difficult to understand => widely violated
" Did not allow reorderings as implemented in standard VMs
® Final fields could appear to change value without synchronization
® Volatile writes could be reordered with normal reads and writes
=> counter-intuitive for most developers

B Java memory model was revised [2]
® Java 1.5 (JSR-133)
= Still some issues (operational semantics definition [3])

B C/C++ didn’t even have a memory model until recently
" Not able to make any statement about threaded semantics!
" Introduced in C++11 and C11
" Based on experience from Java, more conservative

[1] Pugh: “The Java Memory Model is Fatally Flawed”, CCPE 2000
[2] Manson, Pugh, Adve: “The Java memory model”, POPL'05
[3] Aspinall, Sevcik: “Java memory model examples: Good, bad and ugly”, VAMP'07

Everybody wants to optimize

B Language constructs for synchronization
" Java: volatile, synchronized, ...
" C++: atomic, (NOT volatile!), mutex, ...

B Without synchronization (defined language-specific)
= Compiler, (VM), architecture
= Reorder and appear to reorder memory operations
® Maintain sequential semantics per thread
® Other threads may observe any order (have seen examples before)

Java and C++ High-level overview

B Relaxed memory model
" No global visibility ordering of operations
= Allows for standard compiler optimizations

® But
® Program order for each thread (sequential semantics)
® Partial order on memory operations (with respect to synchronizations)
® Visibility function defined

B Correctly synchronized programs
® Guarantee sequential consistency

B Incorrectly synchronized programs
® Java: maintain safety and security guarantees
Type safety etc. (require behavior bounded by causality)
® C++: undefined behavior
No safety (anything can happen/change)

Communication between Threads: Intuition

B Not guaranteed unless by:
® Synchronization
" Volatile/atomic variables
® Specialized functions/classes (e.g., java.util.concurrent, ...)

Thread 1
x=10 Flag is a synchronization variable
y=5 (atomic in C++, volatile in Java),
flag = true:
N i.e., all memory written by T1
synchronization Thread 2 . . .
y fhread2 must be visible to T2 after it
if(flag) reads the value true for flag!
print(x+y)

Memory Model: Intuition

B Abstract relation between threads and memory
" Local thread view!

When are values transferred?

abstraction
of caches and
registers

B Does not talk about classes, objects, methods, ...

Lock Synchronization

" Java " C+t
synchronized (lock) { {
// critical region unique_lock<mutex> I(lock);
} // critical region

® Synchronized methods as)

syntactic sugar " Many flexible variants

B Semantics:
® mutual exclusion
® at most one thread may own a lock

" athread B trying to acquire a lock held by thread A blocks until thread A
releases lock

" note: threads may wait forever (no progress guarantee!)

Memory semantics

B Similar to synchronization variables

Thread 1
x=10

y=5

unlock(m):

Thread 2
lock(m)
print(x+y)

" All memory accesses before an unlock ...
® are ordered before and are visible to ...
® any memory access after a matching lock!

Synchronization Variables

® Variables can be declared volatile (Java) or atomic (C++)

B Reads and writes to synchronization variables
" Are totally ordered with respect to all threads
" Must not be reordered with normal reads and writes

B Compiler
® Must not allocate synchronization variables in registers
" Must not swap variables with synchronization variables

" May need to issue memory fences/barriers

Synchronization Variables

B Write to a synchronization variable
® Similar memory semantics as unlock (no process synchronization!)

B Read from a synchronization variable
® Similar memory semantics as lock (no process synchronization!)

class example {
intx=0;
atomic<bool> v = false

public void writer() {

s hread 1
} > Without volatile, a

platform may reorder
public void reader() { ese Aaesses]
if(v) { .
print(x) Thread 2
}
}

Memory Model Rules

Java/C++: Correctly synchronized programs will execute sequentially
consistent

Correctly synchronized = data-race free
= iff all sequentially consistent executions are free of data races
Two accesses to a shared memory location form a data race in the
execution of a program if
® The two accesses are from different threads
" At least one access is a write and
® The accesses are not synchronized

write

read

read

