
Design of Parallel and High-Performance
Computing
Fall 2014
Lecture: Memory Models

Instructor: Torsten Hoefler & Markus Püschel
TA: Timo Schneider

Motivational video: https://www.youtube.com/watch?v=tW2hT0g4OUs

https://www.youtube.com/watch?v=tW2hT0g4OUs
https://www.youtube.com/watch?v=tW2hT0g4OUs

Review of last lecture
 Architecture case studies

 Memory performance is often the bottleneck
 Parallelism grows with compute performance
 Caching is important
 Several issues to address for parallel systems

 Cache Coherence
 Hardware support to aid programmers
 Two guarantees:

Write propagation (updates are eventually visible to all readers)
Write serialization (writes to the same location are observed in order)

 Two major mechanisms:
Snooping
Directory-based

 Protocols: MESI (MOESI, MESIF)

2

Peer Quiz
 Instructions:

 Pick some partners (locally) and discuss each question for 2 minutes
 We then select a random student (team) to answer the question

 Discuss the MESI protocol – what would be a possible
extension to improve it’s performance
 Try something we didn’t discuss last week 
 Argue why is it an improvement!

 Directory-based Cache Coherence?
 What are the pros/cons of directory-based CC?
 Can this be mixed with broadcast-based?
 If yes, how and why?

3

DPHPC Overview

4

Goals of this lecture
 Don’t forget the projects!

 Groups to be defined by end of this week (send email to Timo)
 Project progress presentations on 11/2 (<1 month from now)!

 Cache-coherence is not enough!
 Many more subtle issues for parallel programs!

 Memory Models
 Sequential consistency
 Why threads cannot be implemented as a library 
 Relaxed consistency models

 Linearizability
 More complex objects 5

Is coherence everything?
 Coherence is concerned with behavior of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

6

P1

Y=10
X=2

P2

while (X==0);
Z=Y

P1 P2

X: 0 Y: 0

X=2

Y=10

read X

read Y

Is coherence everything?
 Coherence is concerned with behavior of individual locations

 Consider the program (initial X,Y,Z = 0)

 Y=10 does not need to have completed before
X=2 is visible to P2!
 This allows P2 to exit the loop and read Y=0
 This may not be the intent of the programmer!
 This may be due to congestion (imagine X is pushed to a remote cache

while Y misses to main memory) and or due to write buffering, or …

 Bonus class question: what happens when Y and X are on the same
cache line (assume simple MESI)?

7

P1

Y=10
X=2

P2

while (X==0)
Z=Y

P1 P2

X: 0 Y: 0

X=2

Y=10

read X

read Y

Memory Models
 Need to define what it means to “read a location” and “to write a

location” and the respective ordering!
 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:
 Compiler and hardware maintain data and control dependencies at all

levels:

8

Y=10
….
T = 14
Y=15

Y = 5
X = 5
T = 3
Y = 3
If (X==Y)
 Z = 5
….

Two operations to
the same location

One operation controls
execution of others

Sequential Processor
 Correctness condition:

 The result of the execution is the same as if the operations had been
executed in the order specified by the program

“program order”
 A read returns the value last written to the same location

“last” is determined by program order!

 Consider only memory operations (e.g., a trace)

 N Processors
 P1, P2, …., PN

 Operations
 Read, Write on shared variables (initial state: all 0)

 Notation:
 P1: R(x):3 P1 reads x and observes the value 3
 P2: W(x,5) P2 writes 5 to variable x

9

Terminology
 Program order

 Deals with a single processor
 Per-processor order of memory accesses, determined by program ‘s

Control flow
 Often represented as trace

 Visibility order
 Deals with operations on all processors
 Order of memory accesses observed by one or more processors
 E.g., “every read of a memory location returns the value that was written

last”
Defined by memory model

10

Memory Models
 Contract at each level between programmer and processor

11

Programmer

High-level language API

Compiler Frontend

Intermediate Language

Compiler Backend/JIT

Machine code

Processor

Optimizing transformations

Reordering

Operation overlap
OOO Execution
VLIW, Vector ISA

Sequential Consistency
 Extension of sequential processor model

 The execution happens as if
 The operations of all processes were executed in some sequential order

(atomicity requirement), and
 The operations of each individual processor appear in this sequence in the

order specified by the program (program order requirement)

 Applies to all layers!
 Disallows many compiler optimizations (e.g., reordering of any memory

instruction)
 Disallows many hardware optimizations (e.g., store buffers, nonblocking

reads, invalidation buffers)

12

Illustration of Sequential Consistency

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

13

Processors issue in
program order

“Switch” selects arbitrary
next operation

Original SC Definition

“The result of any execution is the same as if the operations of
all the processes were executed in some sequential order and
the operations of each individual process appear in this
sequence in the order specified by its program”

 (Lamport, 1979)

14
Good read: Gharachorloo et al.: “Memory consistency and event ordering in scalable shared-memory multiprocessors.”

Alternative SC Definition
 Textbook: Hennessy/Patterson Computer Architecture

 A sequentially consistent system maintains three invariants:
1. A load L from memory location A issued by processor Pi obtains the value

of the previous store to A by Pi, unless another processor has to stored a
value to A in between

2. A load L from memory location A obtains the value of a store S to A by
another processor Pk if S and L are “sufficiently separated in time” and if
no other store occurred between S and L

3. Stores to the same location are serialized (defined as in (2))

 “Sufficiently separated in time” not precise
 Works but is not formal (a formalization must include all possibilities)

15

Example Operation Reordering
 Recap: “normal” sequential assumption:

 Compiler and hardware can reorder instructions as long as control and
data dependencies are met

 Examples:
 Register allocation
 Code motion
 Common subexpression elimination
 Loop transformations

 Pipelining
 Multiple issue (OOO)
 Write buffer bypassing
 Nonblocking reads

16

Co
m

pi
le

r
H

ar
dw

ar
e

Simple compiler optimization
 Initially, all values are zero

 Assume P1 and P2 are compiled separately!
 What optimizations can a compiler perform for P1?

17

P1

input = 23
ready = 1

P2

while (ready == 0) {}
compute(input)

Simple compiler optimization
 Initially, all values are zero

 Assume P1 and P2 are compiled separately!
 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or
Switch statements

 What happens?

18

P1

input = 23
ready = 1

P2

while (ready == 0) {}
compute(input)

Simple compiler optimization
 Initially, all values are zero

 Assume P1 and P2 are compiled separately!
 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or
Switch statements

 What happens?
P2 may never terminate, or
Compute with wrong input

19

P1

input = 23
ready = 1

P2

while (ready == 0) {}
compute(input)

Sequential Consistency Examples
 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

 Relying on single sequential order (atomicity): three sharers

 What can be printed if visibility is not atomic?

20

P1

a = 1
if(b == 0)
 critical section
 a = 0

P2

b = 1
if(a == 0)
 critical section
 b = 0

P1
a = 5
a = 1

P2

if (a == 1)
 b = 1

P3

if(b == 1)
 print(a)

Optimizations violating program order
 Analyzing P1 and P2 in isolation!

 Compiler can reorder

 Hardware can reorder, assume a writes go to write buffer or speculation

21

P1

a = 1
if(b == 0)
 critical section
 a = 0

P2

b = 1
if(a == 0)
 critical section
 b = 0

P1

if(b == 0)
critical section
 a = 0
else
 a = 1

P2

if(a == 0)
 critical section
 b = 0
else
 b = 1

P1

a = 1
if(b == 0)
 critical section
 a = 0

P2

b = 1
if(a == 0)
 critical section
 b = 0

P1

if(b == 0)
 a = 1
 critical section
 a = 0

P2

if(a == 0)
 b = 1
 critical section
 b = 0

Considerations
 Define partial order on memory requests A  B

 If Pi issues two requests A and B and A is issued before B in program order,
then A  B

 A and B are issued to the same variable, and A is entered first, then A  B
(on all processors)

 These partial orders can be interleaved, define a total order
 Many total orders are sequentially consistent!

 Example:
 P1: W(a), R(b), W(c)
 P2: R(a), W(a), R(b)
 Are the following schedules (total orders) sequentially consistent?

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c)
2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a)
3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b)

22

Write buffer example
 Write buffer

 Absorbs writes faster than the next cache  prevents stalls
 Aggregates writes to the same cache block  reduces cache traffic

23

Write buffer example
 Reads can bypass previous writes for faster completion

 If read and write access different locations
 No order between write and following read (W  R)

24

/

Nonblocking read example
 W  W: OK

 R  W, R  R: No order between read and following read/write

25

/
/ /

2

Discussion
 Programmer’s view:

 Prefer sequential consistency
 Easiest to reason about

 Compiler/hardware designer’s view:
 Sequential consistency disallows many optimizations!
 Substantial speed difference
 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming
 Access to shared data (aka. “racing accesses”) are ordered by

synchronization operations
 Synchronization operations guarantee memory ordering (aka. fence)
 More later!

26

 Varying definitions!

 Cache coherence: a mechanism that propagates writes to other
processors/caches if needed, recap:
 Writes are eventually visible to all processors
 Writes to the same location are observed in (one) order

 Memory models: define the bounds on when the value is propagated
to other processors
 E.g., sequential consistency requires all reads and writes to be ordered in

program order

Cache Coherence vs. Memory Model

27Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers”

Relaxed Memory Models
 Sequential consistency

 RR, RW, WR, WW (all orders guaranteed)

 Relaxed consistency (varying terminology):
 Processor consistency (aka. TSO)

Relaxes WR
 Partial write (store) order (aka. PSO)

Relaxes WR, WW
 Weak consistency and release consistency (aka. RMO)

Relaxes RR, RW, WR, WW
 Other combinations/variants possible

There are even more types of orders (above is a simplification)

28

Architectures

29

Source: Wikipedia

Case Study: Memory ordering on Intel
 Intel® 64 and IA-32 Architectures Software Developer's Manual

 Volume 3A: System Programming Guide
 Chapter 8.2 Memory Ordering
 http://www.intel.com/products/processor/manuals/

 Google Tech Talk: IA Memory Ordering
 Richard L. Hudson

http://www.youtube.com/watch?v=WUfvvFD5tAA

30

http://www.youtube.com/watch?v=WUfvvFD5tAA

x86 Memory model: TLO + CC
 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors
 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)
 Write visibility is transitive

 Eight principles
 After some revisions 

31

The Eight x86 Principles

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but
not with older writes to the same location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“
(memory ordering respects transitive visibility)

6. “In a multiprocessor system, writes to the same location have a total
order.” (implied by cache coherence)

7. “In a multiprocessor system, locked instructions have a total order.“
(enables synchronized programming!)

8. “Reads and writes are not reordered with locked instructions. “
(enables synchronized programming!)

32

Principle 1 and 2

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

 All values zero initially

 If r1 == 2, then r2 must be 1!
 Not allowed: r1 == 2, r2 == 0

Question: is r1=0, r2=1 allowed?
 Reads and writes observed in program order
 Cannot be reordered!

33

P1

a = 1
b = 2

P2

r1 = b
r2 = a

Principle 3

Writes are not reordered with older reads. (RW)

 All values zero initially

 If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
 If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

Question: is r1==1 and r2==1 allowed?
 Not allowed: r1 == 1 and r2 == 1

34

P1

r1 = a
b = 1

P2

r2 = b
a = 1

Principle 4

Reads may be reordered with older writes to different locations but not
with older writes to the same location. (NO WR!)

 All values zero initially

 Allowed: r1=0, r2=0
Question: is r1=1, r2=0 allowed?

 Sequential consistency can be enforced with mfence
 Attention: may allow reads to move into critical sections!

35

P1

a = 1
r1 = b

P2

b = 1
r2 = a

Principle 5

In a multiprocessor system, memory ordering obeys causality (memory
ordering respects transitive visibility).

 All values zero initially

 If r1 == 1 and r2==1, then r3 must read 1
 Not allowed: r1 == 1, r2 == 1, and r3 == 0

Question: is r1==1, r2==0, r3==1 allowed?
 Provides some form of atomicity

36

P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

Principle 6

In a multiprocessor system, writes to the same location have a total
order. (implied by cache coherence)

 All values zero initially

 Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
Question: is r1=0, r2=2, r3=0, r4=1 allowed?

 If P3 observes P1’s write before P2’s write, then P4 will also see P1’s write
before P2’s write

 Provides some form of atomicity

37

P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

Principle 7

In a multiprocessor system, locked instructions have a total order.
(enables synchronized programming!)

 All values zero initially, registers r1==r2==1

 Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
 If P3 observes ordering P1:xchg  P2:xchg, P4 observes the same

ordering
Question: is r3=1, r4=0, r5=0, r6=1 allowed?

 (xchg has implicit lock)

38

P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

Principle 8

Reads and writes are not reordered with locked instructions.
(enables synchronized programming!)

 All values zero initially but r1 = r3 = 1

 Not allowed: r2 == 0, r4 == 0
 Locked instructions have total order, so P1 and P2 agree on the same

order
 If volatile variables use locked instructions  practical sequential

consistency

39

P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

An Alternative View: x86-TSO
 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model

for x86 Multiprocessors”, CACM May 2010

“[…] real multiprocessors typically do not provide the sequentially
consistent memory that is assumed by most work on semantics and
verification. Instead, they have relaxed memory models, varying in subtle
ways between processor families, in which different hardware threads may
have only loosely consistent views of a shared memory. Second, the public
vendor architectures, supposedly specifying what programmers can rely
on, are often in ambiguous informal prose (a particularly poor medium
for loose specifications), leading to widespread confusion. [...] We
present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically
precise (rigorously defined in HOL4) but can be presented as an intuitive
abstract machine which should be widely accessible to working
programmers. […]”

40

Notions of Correctness
 We discussed so far:

 Read/write of the same location
Cache coherence (write serialization and atomicity)

 Read/write of multiple locations
Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)
 Invariants “tie” variables together
 Sequential objects
 Concurrent objects

41

Sequential Objects

 Each object has a type

 A type is defined by a class
 Set of fields forms the state of an object
 Set of methods (or free functions) to manipulate the state

 Remark
 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

42

Running Example: FIFO Queue
 Insert elements at tail

 Remove elements from head
 Initial: head = tail = 0
 enq(x)
 enq(y)
 deq() [x]
 …

43

head
tail

0

2

1

5 4

3

yx

capacity = 8

7

6

Sequential Queue

44

head
tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {

 private:
 int head, tail;
 std::vector<Item> items;

 public:
 Queue(int capacity) {
 head = tail = 0;
 items.resize(capacity);
 }
 …
};

Sequential Queue

45

head
tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {
 …

 public:
 void enq(Item x) {
 if((tail+1)%items.size() == head) {
 throw FullException;
 }
 items[tail % items.size()] = x;
 tail = (tail+1)%items.size();
 }

 Item deq() {
 if(tail == head) {
 throw EmtpyException;
 }
 Item item = items[head % items.size()];
 head = (head+1)%items.size();
 }
};

Sequential Execution

 (The) one process executes
operations one at a time
 Sequential 

 Semantics of operation
defined by specification
of the class
 Preconditions and postconditions

46

head
tail

0

2

1

5 4

3

capacity = 8

7

6

Design by Contract!
 Preconditions:

 Specify conditions that must
hold before method executes

 Involve state and arguments
passed

 Specify obligations a client
must meet before calling a
method

 Example: enq()
 Queue must not be full!

47

head
tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {
 …
 void enq(Item x) {
 assert((tail+1)%items.size() != head);
 …
 }
};

Design by Contract!

 Postconditions:
 Specify conditions that must

hold after method executed
 Involve old state and

arguments passed

 Example: enq()
 Queue must contain element!

48

head
tail

0

2

1

5 4

3

capacity = 8

7

6

class Queue {
 …
 void enq(Item x) {
 …
 assert((tail == (old_tail + 1)%items.size()) &&

 (items[old_tail] == x));
 }
};

creative assertion 

Sequential specification
 if(precondition)

 Object is in a specified state

 then(postcondition)
 The method returns a particular value or
 Throws a particular exception and
 Leaves the object in a specified state

 Invariants
 Specified conditions (e.g., object state) must hold anytime a client could

invoke an objects method!

49

Advantages of sequential specification
 State between method calls is defined

 Enables reasoning about objects
 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation
 Contracts for each method
 Local state changes global state

 Adding new methods
 Only reason about state changes that the new method causes
 If invariants are kept: no need to check old methods
 Modularity!

50

Concurrent execution - State
 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

51

Property Sequential Concurrent

State Meaningful only between
method executions

Overlapping method executions 
object may never be “between
method executions”

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq;

Method executions take time!

Concurrent execution - Reasoning
 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

 Consider: enq() || enq() and deq() || deq() and deq() || enq()

52

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

A: q.enq(x);

B: q.enq(y);

Time

C: q.deq;

Method executions take time!

Concurrent execution - Method addition
 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 peek() || enq(): what if tail has not yet been incremented?
 peek() || deq(): what if last item is being dequeued?

53

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact with
everything else

Item peek() {
 if(tail == head) throw EmptyException;
 return items[(tail-1) % items.size()];
}

void enq(Item x) {
 items[tail] = x;
 tail = (tail+1)%items.size();
}

Item deq() {
 Item item = items[head];
 head = (head+1)%items.size();
}

Concurrent objects
 How do we describe one?

 No pre-/postconditions 

 How do we implement one?
 Plan for exponential number of interactions

 How do we tell if an object is correct?
 Analyze all exponential interactions

54

Is it time to panic for software engineers?
Who has a solution?

Lock-based queue

55

class Queue {

 private:
 int head, tail;
 std::vector<Item> items;
 std::mutex lock;

 public:
 Queue(int capacity) {
 head = tail = 0;
 items.resize(capacity);
 }
 …
};

head
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

class Queue {
 …

 public:
 void enq(Item x) {
 std::lock_guard<std::mutex> l(lock)
 if(tail-head == items.size()) {
 throw FullException;
 }
 items[tail % items.size()] = x;
 tail = (tail+1)%items.size();
 }

 Item deq() {
 std::lock_guard<std::mutex> l(lock)
 if(tail == head) {
 throw FullException;
 }
 Item item = items[head % items.size()];
 head = (head+1)%items.size();
 }
};

Lock-based queue
tail

0

2

1

5 4

3

7

6

Queue fields protected by
single shared lock!

Class question: how is the lock
ever unlocked?

head

56

C++ Resource Acquisition is Initialization
 RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)
 Constructor grabs resource
 Destructor frees resource

 Behaves as if
 Implicit unlock at end of block!

 Main advantages
 Always free lock at exit
 No “lost” locks due to exceptions

or strange control flow (goto )
 Very easy to use

class lock_guard<typename mutex_impl> {
 mutex_impl &_mtx; // ref to the mutex

 public:
 scoped_lock(mutex_impl & mtx) : _mtx(mtx) {
 _mtx.lock(); // lock mutex in constructor
 }
 ~scoped_lock() {
 _mtx.unlock(); // unlock mutex in destructor
 }
};

57

Example execution

A: q.deq(): x

B: q.enq(x)

lock update q unlock

lock update q unlock

update q update q

“sequential
 behavior”

58

Correctness
 Is the locked queue correct?

 Yes, only one thread has access if locked correctly
 Allows us again to reason about pre- and postconditions
 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?
 Same as for SC 

It does not scale!
What is the solution here?

59

	Slide 1
	Review of last lecture
	Peer Quiz
	DPHPC Overview
	Goals of this lecture
	Is coherence everything?
	Is coherence everything?
	Memory Models
	Sequential Processor
	Terminology
	Memory Models
	Sequential Consistency
	Illustration of Sequential Consistency
	Original SC Definition
	Alternative SC Definition
	Example Operation Reordering
	Simple compiler optimization
	Simple compiler optimization
	Simple compiler optimization
	Sequential Consistency Examples
	Optimizations violating program order
	Considerations
	Write buffer example
	Write buffer example
	Nonblocking read example
	Discussion
	Cache Coherence vs. Memory Model
	Relaxed Memory Models
	Architectures
	Case Study: Memory ordering on Intel
	x86 Memory model: TLO + CC
	The Eight x86 Principles
	Principle 1 and 2
	Principle 3
	Principle 4
	Principle 5
	Principle 6
	Principle 7
	Principle 8
	An Alternative View: x86-TSO
	Notions of Correctness
	Sequential Objects
	Running Example: FIFO Queue
	Sequential Queue
	Sequential Queue
	Sequential Execution
	Design by Contract!
	Design by Contract!
	Sequential specification
	Advantages of sequential specification
	Concurrent execution - State
	Concurrent execution - Reasoning
	Concurrent execution - Method addition
	Concurrent objects
	Lock-based queue
	Lock-based queue
	C++ Resource Acquisition is Initialization
	Example execution
	Correctness

