
Design of Parallel and High-Performance Computing:
Distributed-Memory Models and Algorithms

Edgar Solomonik

ETH Zurich

December 7, 2015



Summary

Lecture overview

α–β communication cost model

LogP model

LogGP model (LogP with variable-size messages)

Algorithms for broadcasts of large messages

Other collective communication patterns

Bulk Synchronous Parallel (BSP) model

PGAS languages / one-sided communication

Communication-avoiding algorithms

Overview and final comments



α–β Model Point-to-Point Messaging

A simple model for point-to-point messages

The time to send or receive a message of s bytes is

Tα,β
sr (s) = α + s · β

α – latency/synchronization cost per message

β – bandwidth cost per byte

each processor can send and/or receive one message at a time

Let P processors send a message of size s in a ring,

the communication volume (total amount of data sent) is P · s
What is the communication cost (α–β-model execution time)?

if the messages are sent simultaneously,

Tα,β
sim−ring(s) = Tα,β

sr (s) = α + s · β
if the messages are sent in sequence,

Tα,β
seq−ring(s,P) = P · Tα,β

sr (s) = P · (α + s · β)



α–β Model Broadcasts

Broadcasts in the α–β model

The execution time of a broadcast of a message of size s to P processors is

using a binary tree of height
h = 2(log2(P + 1)− 1),

Tα,β
bcast−bin(s,P) = h · Tα,β

sr (s)

= 2(log2(P+1)− 1) · (α + s · β)

using a binomial tree of height
h′ = log2(P + 1),

Tα,β
bcast−bnm(s,P) = h′ · Tα,β

sr (s)

= log2(P+1) · (α + s · β)

Therefore, a binomial tree broadcast is h/h′ ≈ 2 faster in the α–β model
than a binary tree broadcast



LogP Model Point-to-Point Messaging

The LogP model

Limitations of the α–β messaging model:

both sender and receiver block until completion

a processor cannot send multiple messages simultaneously

no overlap between communication and computation

The LogP model (Culler et al. 1996) enables modelling of overlap by
modelling the cost of sending a message of one ‘datum’ in terms of

L – network latency cost (processor free)

o – sender/receiver sequential overhead (processor occupied)

g ≥ o – gap between two sends or two receives (processor free)

P – number of processors

the LogP communication cost for sending a message of s datums is

T LogP
sr (s) = 2o + L + (s − 1) · g



LogP Model Point-to-Point Messaging

Messaging in the LogP model



LogP Model Broadcasts

Broadcasts in the LogP model

Same idea as binomial tree, forward message as soon as it is received, keep
forwarding until all nodes obtain it (Karp et al. 1993)



LogP Model LogGP Extension

The LogGP model

The LogP model parameter g is associated with the datum size

this injection rate implies a fixed-sized packet (datum) can be sent
anywhere after a time interval of g

modern computer networks do not have a small fixed packet size and
achieve higher bandwidth for large messages

The LogGP model (Alexandrov et al. 1997) introduces another
bandwidth parameter G , which dictates the large-message bandwidth

G – Gap per byte; time per byte (processor free)

g ≥ o – gap between injection/retrieval of bytes of two messages

the LogGP time for sending a message of s bytes is

T LogGP
sr (s) = 2o + L + (s − 1) · G



LogP Model LogGP Extension

The LogGP model

Diagram taken from: Alexandrov, A., Ionescu, M. F., Schauser, K. E., and Scheiman, C. LogGP: incorporating long messages

into the LogP model–one step closer towards a realistic model for parallel computation. ACM SPAA, July 1995.



Collectives Protocols for Large Messages Large-Message Broadcasts

Large-message broadcasts

Lets now consider broadcasts of a message of a size s ≥ P bytes

recall binomial tree broadcast cost:

Tα−β
bcast−bnm(s,P) = log2(P+1) · (α + s · β)

consider instead the following broadcast schedule
the root sends a different segment of the message to each processor
all processors exchange segments in P − 1 near-neighbor ring exchanges

the cost of this broadcast schedule is

Tα−β
bcast−ring(s,P) = (P − 1)(Tα−β

sr (s/P) + Tα−β
sim−ring(s/P))

= 2(P − 1)(α + s/P · β)

for sufficiently large message sizes, the new schedule is faster,

lim
s→∞

(
Tα−β

bcast−bnm(s,P)

Tα−β
bcast−ring(s,P)

)
≈ log2(P)/2



Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast

Send a fixed-size packet to left child then to right child (entire message of size s)

if the LogP model datum size is kLogP bytes, the LogP cost is

TLogP
PBT (s,P) ≈ log(P) · (L + 2g + o) + 2(s/kLogP) · g

in the LogGP model, we can select a packet size k and obtain the cost

TLogGP
PBT (s,P, k) ≈ log(P) · (L + 2g + o + 2k · G ) + 2(s/k) · (g + k · G )

minimizing the packet size k ,

kLogGP
opt (s,P) = argmin

k
(TLogGP

PBT (s,P, k))

(via e.g. differentiation by k) we obtain the optimal packet size

kLogGP
opt (s,P) =

√
s/ log(P) ·

√
g

G

so the best packet size, depends not only on architectural parameters, but
also on dynamic parameters: the number of processors and message size



Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast contd.

In LogP we obtained

TLogP
PBT (s,P) ≈ log(P) · (L + 2g + o) + 2(s/kLogP) · g

In LogGP we obtained,

TLogGP
PBT (s,P, k) ≈ log(P) · (L + 2g + o + 2k · G ) + 2(s/k) · (g + k · G )

kLogGP
opt (s,P) =

√
s/ log(P) ·

√
g

G

in the α–β model for a packet size of k , we obtain the cost

Tα,β
PBT(s,P, k) ≈ 2(log(P) + s/k)(α + k · β)

with a minimal-cost packet size of

kα,βopt (s,P) =
√

s/ log(P) ·
√
α

β



Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast conclusions

The LogP model is inflexible, while the LogGP and the α–β models
capture the key input and architectural scaling dependence

Tα,β
PBT(s,P, k) ≈ 2(log(P) + s/k)(α + k · β)

kα,βopt (s,P) =
√

s/ log(P) ·
√
α

β

The minimized cost in the α–β model is

Tα,β
oPBT(s,P) = Tα,β

PBT(s,P, kα,βopt (s,P))

≈ 2

(
log(P) +

√
s · log(P) ·

√
β

α

)
·
(
α +

√
s

log(P)
·
√
α · β

)
= 2 log(P) · α + 4

√
s · log(P) ·

√
α · β + 2s · β

Q: Could we get rid of the factor of two constant in the O(s · β) cost?
A: Not so long as the root sends two copies of the whole message...



Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double Tree
Observation: the leaves of a binary tree, (P − 1)/2 processors, send nothing,
while the internal nodes do all the work.
Double Pipelined Binary Tree Broadcast

define two pipelined binary trees with a shared root

non-root processors act as a leaf in one and as an internal node in the second

send half of the message down each tree

Diagram taken from: Hoefler, Torsten, and Dmitry Moor. ”Energy, Memory, and Runtime Tradeoffs for Implementing Collective

Communication Operations.”



Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double pipelined binary tree

The cost of the double pipelined binary tree is essentially the same as the
cost of a single pipelined binary tree with half the message size,

Tα,β
DPBT(s,P) ≈ 2 log(P) · α + 2

√
2s · log(P) ·

√
α · β + s · β

for a sufficiently large message size (s) this is twice as fast as a single
pipelined binary tree.
How close is the double pipelined binary tree to optimum?

for fixed-size packets, lower bound (Johnsson and Ho 1989) is

Tα,β
bcast−lb(s,P) ≈ log(P) · α + 2

√
s · log(P) ·

√
α · β + s · β

attained by algorithm of Träff and Ripke 1995,
Tα,β

broadcast(s,P) = Tα,β
bcast−lb(s,P).

showing optimality for variable-size packets is an open question



Collectives Protocols for Large Messages Other Collectives

Other types of collective communication

We can classify collectives into four categories

One-to-All: Broadcast, Scatter

All-to-One: Reduce, Gather

All-to-One + One-to-All: Allreduce (Reduce+Broadcast), Allgather
(Gather+Broadcast), Reduce-Scatter (Reduce+Scatter), Scan

All-to-All: All-to-all

MPI (Message-Passing Interface) provides all of these as well as variable
size versions (e.g. (All)Gatherv, All-to-allv), see online for specification of
each routine.
We now present algorithms for and their cost in the α− β model, with

s =


input size : one-to-all collectives

output size : all-to-one collectives

per-processor input/output size : all-to-all collectives



Collectives Protocols for Large Messages Other Collectives

Tree collectives

We have demonstrated how (double/pipelined) binary trees and binomial trees
can be used for broadcasts

A reduction may be done via any broadcast tree with the same
communication cost, with reverse data flow

Treduce = Tbroadcast + cost of local reduction work

Scatter is strictly easier than broadcast, pipeline half message to each child in a
binary tree

Tα,β
scatter(s,P) ≈ 2 log(P) · α + s · β

A gather may be done via the reverse of any scatter algorithm:

Tgather = Tscatter

All-to-One + One-to-All collectives can be done via two trees, but is this most
efficient? What about All-to-All collectives?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allgather (recursive doubling)



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Cost of butterfly Allgather

The butterfly has log(P) levels. The size of the message doubles at each
level until all s elements are gathered, so the total cost is

Tα,β
allgather(s,P) =

{
0 : P = 1

Tα,β
allgather(s/2,P/2) + α + (s/2) · β : P > 1

≈ log(P) · α +

log(P)∑
i=1

s/2i · β

≈ log(P) · α + s · β

The geometric summation in the cost is characteristic of one-to-all,
all-to-one, and all-to-one-to-all butterfly algorithms

no pipelining necessary to achievel linear bandwidth cost



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce-Scatter (recursive halving)

Treduce−scatter = Tallgather + cost of local reduction work



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce

Tallreduce = Treduce−scatter + Tallgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce: note recursive structure of butterfly

Its possible to do Scan (each processor ends up with a unique value of a
prefix sum rather than the full sum) in a similar fashion, but also with
operator application done additionally during recursive doubling (Allgather)



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Scatter

Question: Which tree is this equivalent to?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Scatter

Question: Which tree is this equivalent to?
Answer: Binomial tree.



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast

Tbroadcast = Tscatter + Tallgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Gather

Question: Which other collective could use Gather as a subroutine?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Gather

Question: Which other collective could use Gather as a subroutine?
Answer: Reduction.



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly All-to-All

Note that the size of the message stays the same at each level

Tα,β
all−to−all(s,P) =

{
0 : P = 1

Tα,β
all−to−all(s,P/2) + α + (s/2) · β : P > 1

= α · log(P) + β ·
log(P)∑
i=1

s/2 = α · log(P) + β · s/2 · log(P)

Its possible to do All-to-All in less bandwidth cost (as low as β · s by
sending directly to targets) at the cost of more messages (as high as α · P
if sending directly)



BSP Model Introduction

BSP model definition

The Bulk Synchronous Parallel (BSP) model (Valiant 1990) is a
theoretical execution/cost model for parallel algorithms

execution is subdivided into supersteps, each associated with a
global synchronization

within each superstep each processor can send and receive up to h
messages (called an h-relation)

the cost of sending or receiving h messages of size m is h ·m · ĝ
the total cost of a superstep is the max over all processors at that
superstep

when h = 1 the BSP model is closely related to the α–β model with
β = ĝ and LogGP mode with G = ĝ

we will focus on a variant of BSP with h = P and for consistency
refer to ĝ as β and the cost of a synchronization as α



BSP Model Introduction

Synchronization vs latency

By picking h = P, we allow a global barrier to execute in the same time as
the point-to-point latency

this abstraction is good if the algorithm’s performance is not expected
to be latency-sensitive

messages become non-blocking, but progress must be guaranteed by
barrier

collectives can be done in linear bandwidth cost with O(1) supersteps

enables high-level algorithm development: how many collective
protocols does the algorithm need to execute?

global barrier may be a barrier of a subset of processors, if BSP is
used recursively



BSP Model Introduction

Nonblocking communication

The paradigm of sending non-blocking messages then synchronizing later
is sensible

MPI provides non-blocking ‘I(send/recv)’ primitives that may be
‘Wait’ed on in bulk (these are slightly slower than blocking primitives,
due to buffering)

MPI and other communication frameworks also provide one-sided
messaging primitives which are non-blocking and zero-copy (no
buffering)

one-sided communication progress must be guaranteed by a barrier on
all or a subset of processors (or MPI Win Flush between a pair)



BSP Model Collective Communication

(Reduce-)Scatter and (All)Gather in BSP

When h = P all discussed collectives that require a single butterfly can be
done in time Tbutterfly = α + s · β i.e. they can all be done in one
superstep

Scatter: root sends each message to its target (root incurs s · β send
bandwidth)

Reduce-Scatter: each processor sends its portion to every other
processor (every processor incurs s · β send and receive bandwidth)

Gather: send each message to root (root incurs s · β receive
bandwidth)

Allgather: each processor sends its portion to every other processor
(every processor incurs s · β send and receive bandwidth)

when h < P, we could perform the above algorithms using a butterfly with
‘radix’=h (number of neighbors at each butterfly level) in time
Tbutterfly = logh(P) · α + s · β



BSP Model Collective Communication

Other collectives in BSP

The Broadcast, Reduce, and Allreduce collectives may be done as
combinations of collectives in the same way as with Butterfly algorithms,
using two supersteps

Broadcast done by Scatter then Allgather

Reduce done by Reduce-Scatter then Gather

Allreduce done by Reduce-Scatter then Allgather

BSP preserves this hierarchical algorithmic structure and costs.

However, BSP with h = P can do all-to-all in O(s) bandwidth and O(1)
supersteps (as cheap as other collectives), when h < P, the logarithmic
factor on the bandwidth is recovered.



BSP Model PGAS Models

Systems for one-sided communication

BSP employs the concept of non-blocking communication, which presents
practical challenges

to avoid buffering or additional latency overhead, the communicating
processor must know be aware of the desired buffer location of the
remote processor

if the location of the remote buffer is known, the communication is
called ‘one-sided’

with network hardware known as Remote Direct Memory Access
(RDMA) one-sided communication can be accomplished without
disturbing the work of the remote processor

One-sided communication transfers are commonly be formulated as

Put – send a message to a remote buffer

Get – receive a message from a remote buffer



BSP Model PGAS Models

Partitioned Global Address Space (PGAS)

PGAS programming models facilitate non-blocking remote memory access

they allow declaration of buffers in a globally-addressable space,
which other processors can access remotely

Unified Parallel C (UPC) is a compiler-based PGAS language that
allows direct indexing into globally-distributed arrays (Carlson et al.
1999)

Global Arrays (Nieplocha et al. 1994) is a library that supports a
global address space via a one-sided communication layer (e.g.
ARMCI, Nieplocha et al. 1999)

MPI supports one-sided communication via declaration of windows
that declare remotely-accessible buffers



Communication-Avoiding Algorithms Matrix Multiplication

Matrix multiplication

Matrix multiplication of n-by-n matrices A and B into C , C = A · B is
defined as, for all i , j ,

C [i , j ] =
∑
k

A[i , k] · B[k , j ]

A standard approach to parallelization of matrix multiplication is
commonly referred to as SUMMA (Agarwal et al. 1995, Van De Geijn et
al. 1997), which uses a 2D processor grid, so blocks Alm, Blm, and Clm are
owned by processor Π[l ,m]

SUMMA variant 1: iterate for k = 1 to
√

P and for all i , j ∈ [1,
√

P]

broadcast Aik to Π[i , :]
broadcast Bkj to Π[:, j ]
compute Cij = Cij + Aik · Bkj with processor Π[i , j ]



Communication-Avoiding Algorithms Matrix Multiplication

SUMMA algorithm

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

Tα,β
SUMMA = 2

√
P · Tα,β

broadcast(n2/p,
√

P) ≤ 2
√

P · log(P) · α +
4n2

√
P
· β



Communication-Avoiding Algorithms Matrix Multiplication

3D Matrix multiplication algorithm

Reference: Agarwal et al. 1995 and others

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

Tα,β
3D−MM = 2Tα,β

broadcast(n2/p2/3, p1/3) + Tα,β
reduce(n2/p2/3, p1/3)

≤ 2 log(P) · α +
6n2

P2/3
· β



Communication-Avoiding Algorithms LU Factorization

LU factorization

The LU factorization algorithm provides a stable (when combined with
pivoting) replacement for computing the inverse of a n-by-n matrix A,

A = L · U

where L is lower-triangular and U is upper-triangular is computed via
Gaussian elimination: for k = 1 to n,

set L[k , k] = 1 and U[k, k : n] = A[k, k : n]

divide L[k+1 : n, k] = A[k+1 : n, k]/U[k , k]

update Schur complement

A[k+1 : n, k+1 : n] = A[k+1 : n, k+1 : n]−L[k+1 : n, k]·U[k , k+1 : n]

this algorithm can be blocked analogously to matrix multiplication



Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L₀₀

U₀₀



Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L

U



Communication-Avoiding Algorithms LU Factorization

Blocked LU factorization

L

U

S=A-LU



Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization



Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization

L

U



Communication-Avoiding Algorithms LU Factorization

Block-cyclic LU factorization

L

U

S=A-LU



Communication-Avoiding Algorithms Recursive Algorithms

Recursive matrix multiplication

Now lets consider a recursive parallel algorithm for matrix multiplication[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[

B11 B12

B21 B22

]

C11 = A11 · B11 + A12 · B21

C21 = A21 · B11 + A22 · B21

C12 = A11 · B12 + A12 · B22

C22 = A21 · B12 + A22 · B22

This requires 8 recursive calls to matrix multiplication of n/2-by-n/2
matrices, as well as matrix additions at each level, which can be done in
linear time



Communication-Avoiding Algorithms Recursive Algorithms

Recursive matrix multiplication: analysis

If we execute all 8 recursive multiplies in parallel with P/8 processors, we
obtain a cost recurrence of

Tα,β
MM(n,P) = Tα,β

MM(n/2,P/8) + O(α) + O

(
n2

P
· β
)

The bandwidth cost is dominated by the base cases, where it is
proportionate to(

n/2log8(P)
)2

= (n/P log8(2))2 = (n/P1/3)2 = n2/P2/3

for a total that we have seen before (3D algorithm)

Tα,β
MM(n,P) = O(log(P) · α) + O

(
n2

P2/3
· β
)



Communication-Avoiding Algorithms Recursive Algorithms

Recursive LU factorization

LU factorization has the form[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

]
·
[

U11 U12

0 U22

]
and can be computed recursively via

[L11,U11] = LU(A11)

L21 = A21 · U−1
11

U12 = L−1
11 · A12

[L22,U22] = LU(A22 − L21 · U12)

The inverses L−1
11 and U−1

11 may be obtained as part of the recursion in the
first step (see Tiskin 2002 for details). There are two recursive calls to LU
and 3 matrix multiplications needed at each step



Communication-Avoiding Algorithms Recursive Algorithms

Recursive LU factorization: analysis

The two recursive calls within LU factorization must be done in sequence,
so we perform them with all the processors. We have to also pay for the
cost of matrix multiplications at each level

Tα,β
LU (n,P) = 2Tα,β

LU (n/2,P) + O(Tα,β
MM(n,P))

= 2Tα,β
LU (n/2,P) + O

(
log(P) · α +

n2

P2/3
· β
)

with base-case cost (sequential execution)

Tα,β
LU (n0,P) = O(log(P) · α) + n2

0 · β

the bandwidth cost goes down at each level and we can execute the
base-case sequentially when n0 = n/P2/3, with a total cost of

Tα,β
LU (n,P) = O(P2/3 · log(P) · α) + O

(
n2

P2/3
· β
)



Overview

Conclusion and summary

Summary:

important parallel communication models: α–β, LogP, LogGP, BSP

collective communication: binomial trees are good for small-messages,
pipelining and/or butterfly needed for large-messages

collective protocols provide good building blocks for parallel
algorithms

recursion is a thematic approach in communication-efficient
algorithms



Backup slides


	– Model
	Point-to-Point Messaging
	Broadcasts

	LogP Model
	Point-to-Point Messaging
	Broadcasts
	LogGP Extension

	Collectives Protocols for Large Messages
	Large-Message Broadcasts
	Pipelined Binary Tree
	Double Pipelined Binary Tree
	Other Collectives
	Collectives via Butterfly Networks

	BSP Model
	Introduction
	Collective Communication
	PGAS Models

	Communication-Avoiding Algorithms
	Matrix Multiplication
	LU Factorization
	Recursive Algorithms

	Overview
	Appendix

