
Design of Parallel and High-Performance
Computing
Fall 2015
Lecture: Lock-Free and distributed memory

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Motivational video: https://www.youtube.com/watch?v=PuCx50FdSic

https://www.youtube.com/watch?v=PuCx50FdSic
https://www.youtube.com/watch?v=PuCx50FdSic

Administrivia

 Final presentations: Monday 12/14 (two weeks!)

 Should have (pretty much) final results

 Show us how great your project is

 Some more ideas what to talk about:

Which architecture(s) did you test on?

How did you verify correctness of the parallelization?

Use bounds models for comparisons!

(Somewhat) realistic use-cases and input sets?

Emphasize on the key concepts (may relate to theory of lecture)!

What are remaining issues/limitations?

 Report will be due in January!

 Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Last unit today: Entertainment with bogus results!

 2

DPHPC Excursion

3

 Will be after exam

 Week of February 15

(last week before semester, which starts February 22)

 Proposed schedule (may change on request):

 9:00 meet at HB

 9:09 train leaves, arrives at 12:08 at CSCS (transfer by bus)

Possibly light pizza lunch (TBA)

 12:30 - 15:00 tour and talk (hopefully) as CSCS

 15:05 - 18:28 train back

 Will visit facility, server room, cooling facilities

 Fastest machine in Europe (by some metric), many other interesting ones

 Introduction/tour by CSCS personnel

 Time for networking

Review of last lecture

 MCS – do not forget

 RW locks

 Lock properties/issues (deadlock, priority inversion, blocking vs. spinning)

 Competitive spinning

 Locked and Lock-free tricks

 (coarse-grained locking)

 Fine-grained locking

 RW locking

 Optimistic synchronization

 Lazy locking

 Lock-free (& wait-free)

 Finish wait-free/lock-free

 Consensus hierarchy

4

DPHPC Overview

5

Goals of this lecture

 Scheduling (was 1st unit)

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Scientific benchmarking!

 Common mistakes!

 How to improve current practice

 Important for your project

Brush up your statistics

6

Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies
lock-free)

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

7

Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve
the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

8

Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

9

Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

10

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each
write)

11

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer

Science” (Herlihy, Shavit)
 We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed

computing!

12

Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

13

Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

14

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
 proposed[tid] = v;
 if(CAS(thread, first, tid))
 return v; // I won!
 else
 return proposed[thread]; // thread won
}

Now you know everything

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

15

Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a
process after all arrived)

16

Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems

17

asymptotic limit

Quick Example

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) =

 Class question: Do you know a faster method to accomplish the
same?

18

k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k?

 Independent of P, α, βs? Really?

19

Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?

 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

20

Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/Exscan, …

 Implementations of those (check current MPI libraries)

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

24

HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

25

Network Destination Source

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

 26

The LogP Model

27

Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

28

Simplifications

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

29

Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

30

Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

31

Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

32

Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the
LogP Model”

33

Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives
exactly once

34

P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

35
*1+: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory
concepts → Partitioned Global Address Space (PGAS)

36

