
Design of Parallel and High-Performance 
Computing 
Fall 2015 
Lecture: Lock-Free and distributed memory 

Instructor: Torsten Hoefler & Markus Püschel 

TA: Timo Schneider 

Motivational video: https://www.youtube.com/watch?v=PuCx50FdSic  
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Administrivia 

 Final presentations: Monday 12/14 (two weeks!) 

 Should have (pretty much) final results 

 Show us how great your project is 

 Some more ideas what to talk about: 

Which architecture(s) did you test on? 

How did you verify correctness of the parallelization? 

Use bounds models for comparisons! 

(Somewhat) realistic use-cases and input sets? 

Emphasize on the key concepts (may relate to theory of lecture)! 

What are remaining issues/limitations? 

 Report will be due in January! 

 Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!) 

 Last unit today: Entertainment with bogus results! 
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DPHPC Excursion 
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 Will be after exam  

 Week of February 15  

(last week before semester, which starts February 22) 

 Proposed schedule (may change on request): 

 9:00 meet at HB 

 9:09 train leaves, arrives at 12:08 at CSCS (transfer by bus) 

Possibly light pizza lunch (TBA) 

 12:30 - 15:00 tour and talk (hopefully) as CSCS 

 15:05 - 18:28 train back  

 Will visit facility, server room, cooling facilities 

 Fastest machine in Europe (by some metric), many other interesting ones 

 Introduction/tour by CSCS personnel 

 Time for networking 

 

 

 

 



Review of last lecture 

 MCS – do not forget  

 RW locks 

 Lock properties/issues (deadlock, priority inversion, blocking vs. spinning) 

 Competitive spinning 

 Locked and Lock-free tricks  

 (coarse-grained locking) 

 Fine-grained locking  

 RW locking 

 Optimistic synchronization 

 Lazy locking 

 Lock-free (& wait-free) 

 Finish wait-free/lock-free 

 Consensus hierarchy 
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DPHPC Overview 
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Goals of this lecture 

 Scheduling (was 1st unit) 

 

 Finish wait-free/lock-free 

 Consensus hierarchy 

 The promised proof! 

 

 Scientific benchmarking! 

 Common mistakes! 

 How to improve current practice 

 Important for your project 

Brush up your statistics 
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Lock-free and wait-free 

 A lock-free method 

 guarantees that infinitely often some method call finishes in a finite number 
of steps 

 A wait-free method 

 guarantees that each method call finishes in a finite number of steps (implies 
lock-free) 

 

 Synchronization instructions are not equally powerful! 

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can 
be used for lock-/wait-free implementations of primitives in level z>x. 
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Concept: Consensus Number 

 Each level of the hierarchy has a “consensus number” assigned. 

 Is the maximum number of threads for which primitives in level x can solve 
the consensus problem 

 The consensus problem:  

 Has single function: decide(v) 

 Each thread calls it at most once, the function returns a value that meets two 
conditions: 

consistency: all threads get the same value 

valid: the value is some thread’s input 

 Simplification: binary consensus (inputs in {0,1}) 
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Understanding Consensus 

 Can a particular class solve n-thread consensus wait-free? 

 A class C solves n-thread consensus if there exists a consensus protocol 
using any number of objects of class C and any number of atomic registers 

 The protocol has to be wait-free (bounded number of steps per thread) 

 The consensus number of a class C is the largest n for which that class 
solves n-thread consensus (may be infinite) 

 Assume we have a class D whose objects can be constructed from objects 
out of class C. If class C has consensus number n, what does class D have? 
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Starting simple … 

 Binary consensus with two threads (A, B)! 

 Each thread moves until it decides on a value 

 May update shared objects 

 Protocol state = state of threads + state of shared objects 

 Initial state = state before any thread moved 

 Final state = state after all threads finished 

 States form a tree, wait-free property guarantees a finite tree 

Example with two threads and two moves each! 
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Atomic Registers 

 Theorem [Herlihy’91]: Atomic registers have consensus number one 

 Really? 

 Proof outline: 

 Assume arbitrary consensus protocol, thread A, B 

 Run until it reaches critical state where next action determines outcome 
(show that it must have a critical state first) 

 Show all options using atomic registers and show that they cannot be used 
to determine one outcome for all possible executions! 

1) Any thread reads (other thread runs solo until end) 

2) Threads write to different registers (order doesn’t matter) 

3) Threads write to same register (solo thread can start after each 
write) 
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Atomic Registers 

 Theorem [Herlihy’91]: Atomic registers have consensus number one 

 Corollary: It is impossible to construct a wait-free implementation of 
any object with consensus number of >1 using atomic registers 
 “perhaps one of the most striking impossibility results in Computer 

Science” (Herlihy, Shavit) 
  We need hardware atomics or TM! 

 Proof technique borrowed from: 

 

 

 

 

 Very influential paper, always worth a read! 
 Nicely shows proof techniques that are central to parallel and distributed 

computing! 
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Other Atomic Operations 

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all 
functions where the op commutes or overwrites) have consensus 
number 2! 

 Similar proof technique (bivalence argument) 

 CAS and TM have consensus number ∞ 

 Constructive proof! 
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Compare and Set/Swap Consensus 

 

 

 

 

 

 

 CAS provides an infinite consensus number 

 Machines providing CAS are asynchronous computation equivalents of the 
Turing Machine 

 I.e., any concurrent object can be implemented in a wait-free manner (not 
necessarily fast!) 
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const int first = -1 
volatile int thread = -1; 
int proposed[n]; 
 
int decide(v) { 
  proposed[tid] = v; 
  if(CAS(thread, first, tid)) 
    return  v; // I won! 
  else  
     return proposed[thread]; // thread won 
} 



Now you know everything  

 Not really … ;-) 

 We’ll argue about performance now! 

 But you have all the tools for: 

 Efficient locks 

 Efficient lock-based algorithms 

 Efficient lock-free algorithms (or even wait-free) 

 Reasoning about parallelism! 

 What now? 

 A different class of problems 

Impact on wait-free/lock-free on actual performance is not well understood 

 Relevant to HPC, applies to shared and distributed memory 

 Group communications 
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Remember: A Simple Model for Communication 

 Transfer time T(s) = α+βs 

 α = startup time (latency) 

 β = cost per byte (bandwidth=1/β) 

 As s increases, bandwidth approaches  1/β asymptotically 

 Convergence rate depends on α 

 s1/2 = α/β 

 Assuming no pipelining (new messages can only be issued from a 
process after all arrived)  
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Bandwidth vs. Latency 

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages 

 s1/2 is in the order of kilobytes on real systems 
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asymptotic limit 



Quick Example  

 Simplest linear broadcast 

 One process has a data item to be distributed to all processes 

 Broadcasting s bytes among P processes: 

 T(s) = (P-1) * (α+βs) =  

 

 Class question: Do you know a faster method to accomplish the 
same? 
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k-ary Tree Broadcast 

 Origin process is the root of the tree, passes messages to k neighbors 
which pass them on 

 k=2 -> binary tree 

 Class Question: What is the broadcast time in the simple 
latency/bandwidth model? 

                                                                                                   (for fixed k) 

 Class Question: What is the optimal k?  

 

   

 

 Independent of P, α, βs? Really? 
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Faster Trees? 

 Class Question: Can we broadcast faster than in a ternary tree? 

 Yes because each respective root is idle after sending three messages! 

 Those roots could keep sending! 

 Result is a k-nomial tree 

For k=2, it’s a binomial tree 

 Class Question: What about the runtime? 

   

 Class Question: What is the optimal k here? 

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2 

 Class Question: Can we broadcast faster than in a k-nomial tree? 

                         is asymptotically optimal for s=1! 

 But what about large s? 
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Open Problems 

 Look for optimal parallel algorithms (even in simple models!) 

 And then check the more realistic models 

 Useful optimization targets are MPI collective operations 

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, 
Scan/Exscan, … 

 Implementations of those (check current MPI libraries ) 

 Useful also in scientific computations 

Barnes Hut, linear algebra, FFT, … 

 Lots of work to do! 

 Contact me for thesis ideas (or check SPCL) if you like this topic 

 Usually involve optimization (ILP/LP) and clever algorithms (algebra) 
combined with practical experiments on large-scale machines (10,000+ 
processors) 
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HPC Networking Basics 

 Familiar (non-HPC) network: Internet TCP/IP 

 Common model: 

 

 

 

 

 

 

 

 Class Question: What parameters are needed to model the 
performance (including pipelining)? 

 Latency, Bandwidth, Injection Rate, Host Overhead 
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Network Destination Source 



The LogP Model 

 Defined by four parameters: 

 L: an upper bound on the latency, or delay, incurred in 
communicating a message containing a word (or small number of 
words) from its source module to its target module. 

 o: the overhead, defined as the length of time that a processor is 
engaged in the transmission or reception of each message; during 
this time, the processor cannot perform other operations. 

 g: the gap, defined as the minimum time interval between 
consecutive message transmissions or consecutive message 
receptions at a processor. The reciprocal of g corresponds to the 
available per-processor communication bandwidth. 

 P: the number of processor/memory modules. We assume unit 
time for local operations and call it a cycle. 
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The LogP Model 
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Simple Examples 

 Sending a single message 

 T = 2o+L 

 

 Ping-Pong Round-Trip 

 TRTT = 4o+2L 

 

 Transmitting n messages 

 T(n) = L+(n-1)*max(g, o) + 2o 
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Simplifications 

 o is bigger than g on some machines  

 g can be ignored (eliminates max() terms) 

 be careful with multicore! 

 Offloading networks might have very low o 

 Can be ignored (not yet but hopefully soon) 

 L might be ignored for long message streams 

 If they are pipelined 

 Account g also for the first message 

 Eliminates “-1”  
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Benefits over Latency/Bandwidth Model 

 Models pipelining 

 L/g messages can be “in flight” 

 Captures state of the art (cf. TCP windows) 

 Models computation/communication overlap 

 Asynchronous algorithms 

 Models endpoint congestion/overload 

 Benefits balanced algorithms 
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Example: Broadcasts 

 Class Question: What is the LogP running time for a linear broadcast 
of a single packet? 

 Tlin = L + (P-2) * max(o,g) + 2o 

 Class Question: Approximate the LogP runtime for a binary-tree 
broadcast of a single packet? 

 Tbin ≤ log2P * (L + max(o,g) + 2o) 

 Class Question: Approximate the LogP runtime for an k-ary-tree 
broadcast of a single packet? 

  Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o) 
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Example: Broadcasts 

 Class Question: Approximate the LogP runtime for a binomial tree 
broadcast of a single packet (assume L > g!)?  

 Tbin ≤ log2P * (L + 2o) 

 Class Question: Approximate the LogP runtime for a k-nomial tree 
broadcast of a single packet? 

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o) 

 Class Question: What is the optimal k (assume o>g)? 

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically) 

For larger L, k grows and for larger o, k shrinks 

 Models pipelining capability better than simple model! 
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Example: Broadcasts 

 Class Question: Can we do better than kopt-ary binomial broadcast? 

 Problem: fixed k in all stages might not be optimal 

 We can construct a schedule for the optimal broadcast in practical settings 

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the 
LogP Model” 
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Example: Optimal Broadcast 

 Broadcast to P-1 processes 

 Each process who received the value sends it on; each process receives 
exactly once 
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P=8, L=6, g=4, o=2 



Optimal Broadcast Runtime 

 This determines the maximum number of PEs (P(t)) that can be 
reached in time t 

 P(t) can be computed with a generalized Fibonacci recurrence 
(assuming o>g): 

 

 

 

 Which can be bounded by (see [1]): 

 

 A closed solution is an interesting open problem! 
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*1+: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1) 



The Bigger Picture 

  We learned how to program shared memory systems 

 Coherency & memory models & linearizability 

 Locks as examples for reasoning about correctness and performance 

 List-based sets as examples for lock-free and wait-free algorithms 

 Consensus number 

 We learned about general performance properties and parallelism 

 Amdahl’s and Gustafson’s laws 

 Little’s law, Work-span, … 

 Balance principles & scheduling 

 We learned how to perform model-based optimizations 

 Distributed memory broadcast example with two models 

 What next? MPI? OpenMP? UPC? 

 Next-generation machines “merge” shared and distributed memory 
concepts → Partitioned Global Address Space (PGAS) 
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