
Design of Parallel and High-Performance
Computing
Fall 2015
Lecture: Locks and Lock-Free continued

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Motivational video: https://www.youtube.com/watch?v=-7Bpo1Quxyw

https://www.youtube.com/watch?v=-7Bpo1Quxyw

Administrivia

 Final presentations: Monday 12/14 (three weeks!)

 Should have (pretty much) final results

 Show us how great your project is

 Some more ideas what to talk about:

Which architecture(s) did you test on?

How did you verify correctness of the parallelization?

Use bounds models for comparisons!

(Somewhat) realistic use-cases and input sets?

Emphasize on the key concepts (may relate to theory of lecture)!

What are remaining issues/limitations?

 Report will be due in January!

 Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Last 30 minutes today: Entertainment with bogus results!

2

Review of last lecture

 Abstract models

 Amdahl’s and Gustafson’s Law

 Little’s Law

 Work/depth models and Brent’s theorem

 I/O complexity and balance (Kung)

 Balance principles

 Balance principles

 Outlook to the future

 Memory and data-movement will be more important

3

DPHPC Overview

4

Goals of this lecture

 Recap MCS

 Properties of locks

 Lock-free tricks

 List example but they generalize well

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Distributed memory

 Models and concepts

 Designing (close-to) optimal communication algorithms
5

MCS Lock (1991)

 Make queue explicit

 Acquire lock by
appending to queue

 Spin on own node
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

6

typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL;

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}

Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!

7

Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

8

More Practical Optimizations

 Let’s step back to “data race”

 (recap) two operations A and B on the same memory cause a data race if
one of them is a write (“conflicting access”) and neither AB nor BA

 So we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

 Let’s say you implement a web-based encyclopedia

 Consider the “average two accesses” – do they conflict?

9

Reader-Writer Locks

 Allows multiple concurrent reads

 Multiple reader locks concurrently in CR

 Guarantees mutual exclusion between writer and writer locks and reader
and writer locks

 Syntax:

 read_(un)lock()

 write_(un)lock()

10

A Simple RW Lock

 Seems efficient!?

 Is it? What’s wrong?

 Polling CAS!

 Is it fair?

 Readers are preferred!

 Can always delay
writers (again and
again and again)

11

const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
AtomicAdd(lock, R);
while(lock & W);

}

void write_lock(lock_t lock) {
while(!CAS(lock, 0, W));

}

void read_unlock(lock_t lock) {
AtomicAdd(lock, -R);

}

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}

Fixing those Issues?

 Polling issue:

 Combine with MCS lock idea of queue polling

 Fairness:

 Count readers and writers

12

The final algorithm (Alg. 4)
has a flaw that was
corrected in 2003!

(1991)

Deadlocks

 Kansas state legislature: “When two trains approach each other at a
crossing, both shall come to a full stop and neither shall start up again
until the other has gone.”

[according to Botkin, Harlow "A Treasury of Railroad Folklore" (pp. 381)]

13

What are necessary

conditions for deadlock?

Deadlocks

 Necessary conditions:

 Mutual Exclusion

 Hold one resource, request another

 No preemption

 Circular wait in dependency graph

 One condition missing will prevent deadlocks!

 Different avoidance strategies (which?)

14

Issues with Spinlocks

 Spin-locking is very wasteful

 The spinning thread occupies resources

 Potentially the PE where the waiting thread wants to run  requires
context switch!

 Context switches due to

 Expiration of time-slices (forced)

 Yielding the CPU

15

What is this?

16

Why is the 1997 Mars Rover in our lecture?

 It landed, received program, and worked … until it spuriously
rebooted!

  watchdog

 Scenario (vxWorks RT OS):

 Single CPU

 Two threads A,B sharing common bus, using locks

 (independent) thread C wrote data to flash

 Priority: ACB (A highest, B lowest)

 Thread C would run into a lifelock (infinite loop)

 Thread B was preempted by C while holding lock

 Thread A got stuck at lock 

17[http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

 If busy-waiting thread has higher priority than thread holding lock ⇒
no progress!

 Can be fixed with the help of the OS

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to
highest priority among waiting tasks)

18

Condition Variables

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

19

Condition Variable Semantics

 Hoare-style:

 Signaler passes lock to waiter, signaler suspended

 Waiter runs immediately

 Waiter passes lock back to signaler if it leaves critical section or if it waits
again

 Mesa-style (most used):

 Signaler keeps lock

 Waiter simply put on run queue

 Needs to acquire lock, may wait again

20

When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

21

When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the
competitiveness?

22

Competitive Spinning

 If T is the overhead to process a wait, then a locking algorithm that
spins for time T before it blocks is 2-competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized
Algorithms for Non-Uniform Problems”, SODA 1989

 If randomized algorithms are used, then
e/(e-1)-competitiveness (~1.58) can be achieved

 See paper above!

23

Generalized Locks: Semaphores

 Controlling access to more than one resource

 Described by Dijkstra 1965

 Internal state is an atomic counter C

 Two operations:

 P() – block until C>0; decrement C (atomically)

 V() – signal and increment C

 Binary or 0/1 semaphore equivalent to lock

 C is always 0 or 1, i.e., V() will not increase it further

 Trivia:

 If you’re lucky (aehem, speak Dutch), mnemonics:

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce)

24

Semaphore Implementation

 Can be implemented with mutual exclusion!

 And can be used to implement mutual exclusion 

 … or with test and set and many others!

 Also has fairness concepts:

 Order of granting access to waiting (queued) threads

 strictly fair (starvation impossible, e.g., FIFO)

 weakly fair (starvation possible, e.g., random)

25

Case Study 1: Barrier

 Barrier semantics:

 No process proceeds before all processes reached barrier

 Similar to mutual exclusion but not exclusive, rather “synchronized”

 Often needed in parallel high-performance programming

 Especially in SPMD programming style

 Parallel programming “frameworks” offer barrier semantics (pthread,
OpenMP, MPI)

 MPI_Barrier() (process-based)

 pthread_barrier

 #pragma omp barrier

 …

 Simple implementation: lock xadd + spin

Problem: when to re-use the counter?

Cannot just set it to 0 → Trick: “lock xadd -1” when done 

26
[cf. http://www.spiral.net/software/barrier.html]

Barrier Performance

27

Case Study 2: Reasoning about Semantics

28

CACM

Volume 9 Issue 1, Jan. 1966

bool want[2];
bool turn;
byte cnt;

proctype P(bool i)
{
want[i] = 1;
do
:: (turn != i) ->

(!want[1-i]);
turn = i

:: (turn == i) ->
break

od;
skip; /* critical section */
cnt = cnt+1;
assert(cnt == 1);
cnt = cnt-1;
want[i] = 0

}

init { run P(0); run P(1) }

Case Study 2: Reasoning about Semantics

 Is the proposed algorithm correct?

 We may proof it manually

Using tools from the last lecture

→ reason about the state space of H

 Or use automated proofs (model checking)

E.g., SPIN (Promela syntax)

29

Case Study 2: Reasoning about Semantics

 Spin tells us quickly that it
found a problem

 A sequentially consistent
order that violates mutual
exclusion!

 It’s not always that easy

 This example comes from the SPIN
tutorial

 More than two threads make it much
more demanding!

 More in the recitation!

30

Locks in Practice

 Running example: List-based set of integers

 S.insert(v) – return true if v was inserted

 S.remove(v) – return true if v was removed

 S.contains(v) – return true iff v in S

 Simple ordered linked list

 Do not use this at home (poor performance)

 Good to demonstrate locking techniques

E.g., skip lists would be faster but more complex

31

Set Structure in Memory

 This and many of the following illustrations are provided by Maurice
Herlihy in conjunction with the book “The Art of Multiprocessor
Programming”

32

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Sequential Set

33

boolean add(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x)

return false;
else {

node n = new node();
n.key = x;
n.next = curr;
pred.next = n;

}
return true;

}

boolean remove(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
free(curr);
return true;

}
return false;

}

boolean contains(S, x) {
int *curr = S.head;
while(curr.key < x)

curr = curr.next;
if(curr.key == x)

return true;
return false;

}

typedef struct {
int key;
node *next;

} node;

Sequential Operations

34

a c d

b

a b c

add()

remove()

Concurrent Sets

 What can happen if multiple threads call set operations at the “same
time”?

 Operations can conflict!

 Which operations conflict?

 (add, remove), (add, add), (remove, remove), (remove, contains) will
conflict

 (add, contains) may miss update (which is fine)

 (contains, contains) does not conflict

 How can we fix it?

35

Coarse-grained Locking

36

boolean add(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x)

unlock(S);
return false;

else {
node node = malloc();
node.key = x;
node.next = curr;
pred.next = node;

}
unlock(S);
return true;

}

boolean remove(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
unlock(S);
free(curr);
return true;

}
unlock(S);
return false;

}

boolean contains(S, x) {
lock(S);
int *curr = S.head;
while(curr.key < x)

curr = curr.next;
if(curr.key == x) {

unlock(S);
return true;

}
unlock(S);
return false;

}

Coarse-grained Locking

 Correctness proof?

 Assume sequential version is correct

Alternative: define set of invariants and proof that initial condition as
well as all transformations adhere (pre- and post conditions)

 Proof that all accesses to shared data are in CRs

This may prevent some optimizations

 Is the algorithm deadlock-free? Why?

 Locks are acquired in the same order (only one lock)

 Is the algorithm starvation-free and/or fair? Why?

 It depends on the properties of the used locks!

37

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

38

honk!

a b d

c

Simple but hotspot + bottleneck

honk!

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%. A good programmer will not be lulled
into complacency by such reasoning, he will be wise to look carefully at the
critical code; but only after that code has been identified” — Donald Knuth
(in Structured Programming with Goto Statements)

39

How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex

40

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

41

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

42

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free

43

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free

44

Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead

45

Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock

will see why in a minute

 Important to acquire locks in the same order

46

typedef struct {
int key;
node *next;
lock_t lock;

} node;

Hand-over-Hand (fine-grained) locking

47

a b c

Hand-over-Hand (fine-grained) locking

48

a b c

Hand-over-Hand (fine-grained) locking

49

a b c

Hand-over-Hand (fine-grained) locking

50

a b c

Hand-over-Hand (fine-grained) locking

51

a b c

Removing a Node

52

a b c d

remove(b)

Removing a Node

53

a b c d

remove(b)

Removing a Node

54

a b c d

remove(b)

Removing a Node

55

a b c d

remove(b)

Removing a Node

56

a b c d

remove(b)

Removing a Node

57

a c d

remove(b)
Why lock target node?

Concurrent Removes

58

a b c d

remove(c)
remove(b)

Concurrent Removes

59

a b c d

remove(b)
remove(c)

Concurrent Removes

60

a b c d

remove(b)
remove(c)

Concurrent Removes

61

a b c d

remove(b)
remove(c)

Concurrent Removes

62

a b c d

remove(b)
remove(c)

Concurrent Removes

63

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 64

Concurrent Removes

64

a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 65

Concurrent Removes

65

a b c d

remove(b)
remove(c)

Uh, Oh

66

a c d

remove(b)
remove(c)

Uh, Oh

67

a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking

68

Hand-Over-Hand Again

69

a b c d

remove(b)

Hand-Over-Hand Again

70

a b c d

remove(b)

Hand-Over-Hand Again

71

a b c d

remove(b)

Hand-Over-Hand Again

72

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

73

a b c d

remove(b)
Found

it!

Hand-Over-Hand Again

74

a c d

remove(b)

Removing a Node

75

a b c d

remove(b)
remove(c)

Removing a Node

76

a b c d

remove(b)
remove(c)

Removing a Node

77

a b c d

remove(b)
remove(c)

Removing a Node

78

a b c d

remove(b)
remove(c)

Removing a Node

79

a b c d

remove(b)
remove(c)

Removing a Node

80

a b c d

remove(b)
remove(c)

Removing a Node

81

a b c d

remove(b)
remove(c)

Removing a Node

82

a b c d

remove(b)
remove(c)

Removing a Node

83

a b c d

Must

acquire

Lock for

b

remove(c)

Removing a Node

84

a b c d

Waiting to

acquire

lock for b

remove(c)

Removing a Node

85

a b c d

Wait!
remove(c)

Removing a Node

86

a b d

Proceed

to

remove(b)

Removing a Node

87

a b d

remove(b)

Removing a Node

88

a b d

remove(b)

Removing a Node

89

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks

90

Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations

91

Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct

92

Optimistic: Traverse without Locking

93

b d ea

add(c) Aha!

Optimistic: Lock and Load

94

b d ea

add(c)

Optimistic: Lock and Load

95

b d ea

add(c)

c

What could go wrong?

96

b d ea

add(c) Aha!

What could go wrong?

97

b d ea

add(c)

What could go wrong?

98

b d ea

remove(b)

What could go wrong?

99

b d ea

remove(b)

What could go wrong?

100

b d ea

add(c)

What could go wrong?

101

b d ea

add(c)

c

What could go wrong?

102

d ea

add(c) Uh-oh

Validate – Part 1

103

b d ea

add(c) Yes, b still

reachable

from head

What Else Could Go Wrong?

104

b d ea

add(c) Aha!

What Else Could Go Wrong?

105

b d ea

add(c)

add(b’)

What Else Could Go Wrong?

106

b d ea

add(c)

add(b’)b’

What Else Could Go Wrong?

107

b d ea

add(c)
b’

What Else Could Go Wrong?

108

b d ea

add(c)

c

Validate Part 2
(while holding locks)

109

b d ea

add(c) Yes, b still

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!

110

Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!

111

typedef struct {
int key;
node *next;
lock_t lock;
boolean valid;

} node;

Lazy Removal

112

aa b c d

c

Lazy Removal

113

aa b d

Present in list

c

Lazy Removal

114

aa b d

Logically deleted

Lazy Removal

115

aa b c d

Physically deleted

Lazy Removal

116

aa b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr

117

Business as Usual

118

a b c

Business as Usual

119

a b c

Business as Usual

120

a b c

Business as Usual

121

a b c

remove(b)

Business as Usual

122

a b c

a not

marked

Business as Usual

123

a b c

a still

points

to b

Business as Usual

124

a b c

Logical

delete

Business as Usual

125

a b c

physical

delete

Business as Usual

126

a b c

Summary: Wait-free Contains

127

a 0 0 0a b c 0e1d

Use Mark bit + list ordering
1. Not marked  in the set
2. Marked or missing  not in the set

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable

128

Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion

129

Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it

130

a 0 0 0a b c 0e1c

(1) Logical Removal

(2) Physical

Removal
Use CAS to verify pointer

is correct

Not enough! Why?

Lock-free Lists

131

Problem…

132

a 0 0 0a b c 0e1c

(1) Logical Removal

(3) Physical

Removal 0d

(2) Node

added

The Solution: Combine Mark and Pointer

133

a 0 0 0a b c 0e1c

(1) Logical Removal

=

Set Mark Bit

(3) Physical

Removal CAS
0d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not

added after logical

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b (operates on a cache line))

134

Removing a Node

135

a b d

remove

b

remove

c

c

Removing a Node

136

a b d

remove

b

remove

c

c

failed

CAS CAS

Removing a Node

137

a b d

remove

b

remove

c

c

Uh oh – node marked but not removed!

138

a d

remove

b

remove

c

Zombie node!

Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and
remove curr

If CAS fails, restart from beginning!

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!

139

Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really
depends)

140

More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor
Programming”

141

Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies
lock-free)

 Was our lock-free list also wait-free?

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can
be used for lock-/wait-free implementations of primitives in level z>x.

142

Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve
the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

143

Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects
out of class C. If class C has consensus number n, what does class D have?

144

Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

145

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each
write)

146

Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer

Science” (Herlihy, Shavit)
 We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed

computing!

147

Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all
functions where the op commutes or overwrites) have consensus
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

148

Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not
necessarily fast!)

149

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))

return v; // I won!
else

return proposed[thread]; // thread won
}

Now you know everything 

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

150

Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a
process after all arrived)

151

Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems

152

asymptotic limit

Quick Example

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) =

 Class question: Do you know a faster method to accomplish the
same?

153

k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k?



 Independent of P, α, βs? Really?

154

Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

155

Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather,
Scan/Exscan, …

 Implementations of those (check current MPI libraries )

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra)
combined with practical experiments on large-scale machines (10,000+
processors)

159

HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

160

Network DestinationSource

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in
communicating a message containing a word (or small number of
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is
engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between
consecutive message transmissions or consecutive message
receptions at a processor. The reciprocal of g corresponds to the
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit
time for local operations and call it a cycle.

161

The LogP Model

162

Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

163

Simplifications

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

164

Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

165

Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

166

Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree
broadcast of a single packet (assume L > g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

167

Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the
LogP Model”

168

Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives
exactly once

169

P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

170
[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory
concepts → Partitioned Global Address Space (PGAS)

171

