
Design of Parallel and High-Performance
Computing
Fall 2015
Lecture: Locks and Lock-Free continued

Instructor: Torsten Hoefler & Markus Püschel

TA: Timo Schneider

Motivational video: https://www.youtube.com/watch?v=-7Bpo1Quxyw

Administrivia

 Final presentations: Monday 12/14 (three weeks!)

 Should have (pretty much) final results

 Show us how great your project is

 Some more ideas what to talk about:

Which architecture(s) did you test on?

How did you verify correctness of the parallelization?

Use bounds models for comparisons!

(Somewhat) realistic use-cases and input sets?

Emphasize on the key concepts (may relate to theory of lecture)!

What are remaining issues/limitations?

 Report will be due in January!

 Still, starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Last 30 minutes today: Entertainment with bogus results!
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Review of last lecture

 Abstract models 

 Amdahl’s and Gustafson’s Law

 Little’s Law

 Work/depth models and Brent’s theorem

 I/O complexity and balance (Kung)

 Balance principles

 Balance principles

 Outlook to the future

 Memory and data-movement will be more important
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DPHPC Overview

4

Goals of this lecture

 Recap MCS

 Properties of locks

 Lock-free tricks 

 List example but they generalize well

 Finish wait-free/lock-free

 Consensus hierarchy

 The promised proof!

 Distributed memory

 Models and concepts

 Designing (close-to) optimal communication algorithms
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MCS Lock (1991)

 Make queue explicit

 Acquire lock by 
appending to queue

 Spin on own node 
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!
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typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL; 

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}



Lessons Learned!

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose 
significance and impact on the theory and/or practice of distributed 
computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!
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Time to Declare Victory?

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested
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More Practical Optimizations

 Let’s step back to “data race”

 (recap) two operations A and B on the same memory cause a data race if 
one of them is a write (“conflicting access”) and neither AB nor BA 

 So we put conflicting accesses into a CR and lock it!

This also guarantees memory consistency in C++/Java!

 Let’s say you implement a web-based encyclopedia 

 Consider the “average two accesses” – do they conflict?
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Reader-Writer Locks

 Allows multiple concurrent reads

 Multiple reader locks concurrently in CR

 Guarantees mutual exclusion between writer and writer locks and reader 
and writer locks

 Syntax:

 read_(un)lock()

 write_(un)lock()
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A Simple RW Lock

 Seems efficient!?

 Is it? What’s wrong?

 Polling CAS!

 Is it fair?

 Readers are preferred!

 Can always delay 
writers (again and 
again and again) 
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const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
AtomicAdd(lock, R);
while(lock & W);  

}

void write_lock(lock_t lock) {
while(!CAS(lock, 0, W));  

}

void read_unlock(lock_t lock) {
AtomicAdd(lock, -R);

}

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}

Fixing those Issues?

 Polling issue:

 Combine with MCS lock idea of queue polling

 Fairness:

 Count readers and writers
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The final algorithm (Alg. 4) 
has a flaw that was 
corrected in 2003!

(1991)



Deadlocks

 Kansas state legislature: “When two trains approach each other at a 
crossing, both shall come to a full stop and neither shall start up again 
until the other has gone.”

[according to Botkin, Harlow  "A Treasury of Railroad Folklore" (pp. 381)]
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What are necessary 

conditions for deadlock?

Deadlocks

 Necessary conditions:

 Mutual Exclusion

 Hold one resource, request another

 No preemption

 Circular wait in dependency graph

 One condition missing will prevent deadlocks!

 Different avoidance strategies (which?)
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Issues with Spinlocks

 Spin-locking is very wasteful

 The spinning thread occupies resources

 Potentially the PE where the waiting thread wants to run  requires 
context switch!

 Context switches due to

 Expiration of time-slices (forced)

 Yielding the CPU
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What is this?
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Why is the 1997 Mars Rover in our lecture?

 It landed, received program, and worked … until it spuriously 
rebooted!

  watchdog

 Scenario (vxWorks RT OS):

 Single CPU

 Two threads A,B sharing common bus, using locks

 (independent) thread C wrote data to flash

 Priority: ACB (A highest, B lowest)

 Thread C would run into a lifelock (infinite loop)

 Thread B was preempted by C while holding lock

 Thread A got stuck at lock 

17[http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html]

Priority Inversion

 If busy-waiting thread has higher priority than thread holding lock ⇒
no progress!

 Can be fixed with the help of the OS

 E.g., mutex priority inheritance (temporarily boost priority of task in CR to 
highest priority among waiting tasks)
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Condition Variables

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch
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Condition Variable Semantics

 Hoare-style:

 Signaler passes lock to waiter, signaler suspended

 Waiter runs immediately

 Waiter passes lock back to signaler if it leaves critical section or if it waits 
again

 Mesa-style (most used):

 Signaler keeps lock

 Waiter simply put on run queue

 Needs to acquire lock, may wait again

20

When to Spin and When to Block?

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block
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When to Spin and When to Block?

 What is a “while”?

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant 
a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the 
competitiveness?

22

Competitive Spinning

 If T is the overhead to process a wait, then a locking algorithm that 
spins for time T before it blocks is 2-competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized 
Algorithms for Non-Uniform Problems”, SODA 1989 

 If randomized algorithms are used, then 
e/(e-1)-competitiveness (~1.58) can be achieved

 See paper above!
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Generalized Locks: Semaphores

 Controlling access to more than one resource

 Described by Dijkstra 1965

 Internal state is an atomic counter C

 Two operations:

 P() – block until C>0; decrement C (atomically)

 V() – signal and increment C

 Binary or 0/1 semaphore equivalent to lock

 C is always 0 or 1, i.e., V() will not increase it further

 Trivia:

 If you’re lucky (aehem, speak Dutch), mnemonics:

Verhogen (increment) and Prolaag (probeer te verlagen = try to reduce)
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Semaphore Implementation

 Can be implemented with mutual exclusion!

 And can be used to implement mutual exclusion 

 … or with test and set and many others!

 Also has fairness concepts:

 Order of granting access to waiting (queued) threads

 strictly fair (starvation impossible, e.g., FIFO)

 weakly fair (starvation possible, e.g., random)
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Case Study 1: Barrier

 Barrier semantics:

 No process proceeds before all processes reached barrier

 Similar to mutual exclusion but not exclusive, rather “synchronized”

 Often needed in parallel high-performance programming

 Especially in SPMD programming style

 Parallel programming “frameworks” offer barrier semantics (pthread, 
OpenMP, MPI)

 MPI_Barrier() (process-based)

 pthread_barrier

 #pragma omp barrier

 …

 Simple implementation: lock xadd + spin

Problem: when to re-use the counter?

Cannot just set it to 0 → Trick: “lock xadd -1” when done 

26
[cf. http://www.spiral.net/software/barrier.html]

Barrier Performance
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Case Study 2: Reasoning about Semantics
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CACM 

Volume 9 Issue 1, Jan. 1966 

bool want[2];
bool turn;
byte cnt;

proctype P(bool i)
{
want[i] = 1;
do
:: (turn != i) ->

(!want[1-i]);
turn = i

:: (turn == i) ->
break

od;
skip; /* critical section */
cnt = cnt+1;
assert(cnt == 1);
cnt = cnt-1;
want[i] = 0

}

init { run P(0); run P(1) }

Case Study 2: Reasoning about Semantics

 Is the proposed algorithm correct?

 We may proof it manually 

Using tools from the last lecture

→ reason about the state space of H

 Or use automated proofs (model checking)

E.g., SPIN (Promela syntax)
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Case Study 2: Reasoning about Semantics

 Spin tells us quickly that it 
found a problem

 A sequentially consistent
order that violates mutual
exclusion!

 It’s not always that easy

 This example comes from the SPIN
tutorial

 More than two threads make it much 
more demanding!

 More in the recitation!
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Locks in Practice

 Running example: List-based set of integers

 S.insert(v) – return true if v was inserted

 S.remove(v) – return true if v was removed

 S.contains(v) – return true iff v in S

 Simple ordered linked list

 Do not use this at home (poor performance)

 Good to demonstrate locking techniques

E.g., skip lists would be faster but more complex
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Set Structure in Memory

 This and many of the following illustrations are provided by Maurice 
Herlihy in conjunction with the book “The Art of Multiprocessor 
Programming”

32

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Sequential Set
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boolean add(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) 

return false;
else {

node n = new node();
n.key = x;
n.next = curr;
pred.next = n;

}  
return true;

}

boolean remove(S, x) {
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
free(curr);
return true;

} 
return false;

}  

boolean contains(S, x) {
int *curr = S.head;
while(curr.key < x) 

curr = curr.next;
if(curr.key == x) 

return true;
return false;

}

typedef struct {
int key;
node *next;

} node;

Sequential Operations
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a c d

b

a b c

add()

remove()

Concurrent Sets

 What can happen if multiple threads call set operations at the “same 
time”?

 Operations can conflict!

 Which operations conflict?

 (add, remove), (add, add), (remove, remove), (remove, contains) will 
conflict

 (add, contains) may miss update (which is fine)

 (contains, contains) does not conflict

 How can we fix it?
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Coarse-grained Locking
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boolean add(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) 

unlock(S);
return false;

else {
node node = malloc();
node.key = x;
node.next = curr;
pred.next = node;

}  
unlock(S);
return true;

}

boolean remove(S, x) {
lock(S);
node *pred = S.head;
node *curr = pred.next;
while(curr.key < x) {

pred = curr;
curr = pred.next;

}
if(curr.key == x) {

pred.next = curr.next;
unlock(S);
free(curr);
return true;

} 
unlock(S);
return false;

}  

boolean contains(S, x) {
lock(S);
int *curr = S.head;
while(curr.key < x) 

curr = curr.next;
if(curr.key == x)  {

unlock(S);
return true;

}
unlock(S);
return false;

}



Coarse-grained Locking

 Correctness proof?

 Assume sequential version is correct

Alternative: define set of invariants and proof that initial condition as 
well as all transformations adhere (pre- and post conditions)

 Proof that all accesses to shared data are in CRs

This may prevent some optimizations

 Is the algorithm deadlock-free? Why?

 Locks are acquired in the same order (only one lock)

 Is the algorithm starvation-free and/or fair? Why?

 It depends on the properties of the used locks!
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Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads 
accessing it?
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honk!

a b d

c

Simple but hotspot + bottleneck 

honk!

Coarse-grained Locking

 Is the algorithm performing well with many concurrent threads 
accessing it?

 No, access to the whole list is serialized

 BUT: it’s easy to implement and proof correct

 Those benefits should never be underestimated

 May be just good enough

 “We should forget about small efficiencies, say about 97% of the time: 
premature optimization is the root of all evil. Yet we should not pass up 
our opportunities in that critical 3%. A good programmer will not be lulled 
into complacency by such reasoning, he will be wise to look carefully at the 
critical code; but only after that code has been identified” — Donald Knuth 
(in Structured Programming with Goto Statements)
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How to Improve?

 Will present some “tricks”

 Apply to the list example

 But often generalize to other algorithms

 Remember the trick, not the example!

 See them as “concurrent programming patterns” (not literally)

 Good toolbox for development of concurrent programs

 They become successively more complex 

40

Tricks Overview

1. Fine-grained locking

 Split object into “lockable components”

 Guarantee mutual exclusion for conflicting accesses to same component

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

 Multiple readers hold lock (traversal)

 contains() only needs read lock

 Locks may be upgraded during operation

Must ensure starvation-freedom for writer locks!

3. Optimistic synchronization

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

 Traverse without locking

Need to make sure that this is correct!

 Acquire lock if update necessary

May need re-start from beginning, tricky

4. Lazy locking

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

 Postpone hard work to idle periods

 Mark node deleted

Delete it physically later

5. Lock-free
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Tricks Overview

1. Fine-grained locking

2. Reader/writer locking

3. Optimistic synchronization

4. Lazy locking

5. Lock-free

 Completely avoid locks

 Enables wait-freedom

 Will need atomics (see later why!)

 Often very complex, sometimes higher overhead
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Trick 1: Fine-grained Locking

 Each element can be locked

 High memory overhead

 Threads can traverse list
concurrently like a pipeline

 Tricky to prove correctness

 And deadlock-freedom

 Two-phase locking (acquire, release) often helps

 Hand-over-hand (coupled locking)

 Not safe to release x’s lock before acquiring x.next’s lock 

will see why in a minute

 Important to acquire locks in the same order
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typedef struct {
int key;
node *next;
lock_t lock;

} node;

Hand-over-Hand (fine-grained) locking
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a b c

Hand-over-Hand (fine-grained) locking
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a b c



Hand-over-Hand (fine-grained) locking
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a b c

Hand-over-Hand (fine-grained) locking
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a b c

Hand-over-Hand (fine-grained) locking
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a b c

Removing a Node
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a b c d

remove(b)

Removing a Node
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a b c d

remove(b)

Removing a Node
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a b c d

remove(b)



Removing a Node
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a b c d

remove(b)

Removing a Node
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a b c d

remove(b)

Removing a Node
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a c d

remove(b)
Why lock target node?

Concurrent Removes
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a b c d

remove(c)
remove(b)

Concurrent Removes
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a b c d

remove(b)
remove(c)

Concurrent Removes
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a b c d

remove(b)
remove(c)



Concurrent Removes
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a b c d

remove(b)
remove(c)

Concurrent Removes
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a b c d

remove(b)
remove(c)

Concurrent Removes
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a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 64

Concurrent Removes
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a b c d

remove(b)
remove(c)

Art of Multiprocessor Programming 65

Concurrent Removes
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a b c d

remove(b)
remove(c)

Uh, Oh
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a c d

remove(b)
remove(c)



Uh, Oh
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a c d

Bad news, c not removed

remove(b)
remove(c)

Insight

 If a node x is locked

 Successor of x cannot be deleted!

 Thus, safe locking is

 Lock node to be deleted

 And its predecessor!

  hand-over-hand locking
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Hand-Over-Hand Again
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a b c d

remove(b)

Hand-Over-Hand Again

70

a b c d

remove(b)

Hand-Over-Hand Again

71

a b c d

remove(b)

Hand-Over-Hand Again

72

a b c d

remove(b)
Found 

it!



Hand-Over-Hand Again
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a b c d

remove(b)
Found 

it!

Hand-Over-Hand Again
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a c d

remove(b)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)



Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

remove(b)
remove(c)

Removing a Node
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a b c d

Must 

acquire 

Lock for 

b

remove(c)

Removing a Node

84

a b c d

Waiting to 

acquire 

lock for b

remove(c)



Removing a Node
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a b c d

Wait!
remove(c)

Removing a Node

86

a b d

Proceed 

to 

remove(b)

Removing a Node
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a b d

remove(b)

Removing a Node

88

a b d

remove(b)

Removing a Node

89

a d

remove(b)

What are the Issues?

 We have fine-grained locking, will there be contention?

 Yes, the list can only be traversed sequentially, a remove of the 3rd item 
will block all other threads!

 This is essentially still serialized if the list is short (since threads can only 
pipeline on list elements)

 Other problems, ignoring contention?

 Must acquire O(|S|) locks 
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Trick 2: Reader/Writer Locking

 Same hand-over-hand locking

 Traversal uses reader locks

 Once add finds position or remove finds target node, upgrade both locks 
to writer locks

 Need to guarantee deadlock and starvation freedom!

 Allows truly concurrent traversals

 Still blocks behind writing threads

 Still O(|S|) lock/unlock operations
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Trick 3: Optimistic synchronization

 Similar to reader/writer locking but traverse list without locks

 Dangerous! Requires additional checks.

 Harder to proof correct
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Optimistic: Traverse without Locking
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b d ea

add(c) Aha!

Optimistic: Lock and Load
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b d ea

add(c)

Optimistic: Lock and Load

95

b d ea

add(c)

c

What could go wrong?

96

b d ea

add(c) Aha!



What could go wrong?
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b d ea

add(c)

What could go wrong?

98

b d ea

remove(b)

What could go wrong?

99

b d ea

remove(b)

What could go wrong?

100

b d ea

add(c)

What could go wrong?

101

b d ea

add(c)

c

What could go wrong?

102

d ea

add(c) Uh-oh



Validate – Part 1

103

b d ea

add(c) Yes, b still 

reachable 

from head

What Else Could Go Wrong?
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b d ea

add(c) Aha!

What Else Could Go Wrong?

105

b d ea

add(c)

add(b’)

What Else Could Go Wrong?
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b d ea

add(c)

add(b’)b’

What Else Could Go Wrong?
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b d ea

add(c)
b’

What Else Could Go Wrong?

108

b d ea

add(c)

c



Validate Part 2
(while holding locks)
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b d ea

add(c) Yes, b still 

points to d

Optimistic synchronization

 One MUST validate AFTER locking

1. Check if the path how we got there is still valid!

2. Check if locked nodes are still connected

 If any of those checks fail?

Start over from the beginning (hopefully rare)

 Not starvation-free

 A thread may need to abort forever if nodes are added/removed

 Should be rare in practice!

 Other disadvantages?

 All operations requires two traversals of the list!

 Even contains() needs to check if node is still in the list!
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Trick 4: Lazy synchronization

 We really want one list traversal

 Also, contains() should be wait-free

 Is probably the most-used operation

 Lazy locking is similar to optimistic

 Key insight: removing is problematic

 Perform it “lazily”

 Add a new “valid” field

 Indicates if node is still in the set

 Can remove it without changing list structure!

 Scan once, contains() never locks!
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typedef struct {
int key;
node *next;
lock_t lock;
boolean valid;

} node;

Lazy Removal
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aa b c d

c

Lazy Removal

113

aa b d

Present in list

c

Lazy Removal

114

aa b d

Logically deleted



Lazy Removal
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aa b c d

Physically deleted

Lazy Removal

116

aa b d

Physically deleted

How does it work?

 Eliminates need to re-scan list for reachability

 Maintains invariant that every unmarked node is reachable!

 Contains can now simply traverse the list

 Just check marks, not reachability, no locks

 Remove/Add

 Scan through locked and marked nodes

 Removing does not delay others

 Must only lock when list structure is updated

Check if neither pred nor curr are marked, pred.next == curr
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Business as Usual
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a b c

Business as Usual

119

a b c

Business as Usual

120

a b c



Business as Usual
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a b c

remove(b)

Business as Usual

122

a b c

a not 

marked

Business as Usual

123

a b c

a still 

points 

to b

Business as Usual

124

a b c

Logical 

delete

Business as Usual

125

a b c

physical 

delete

Business as Usual

126

a b c



Summary: Wait-free Contains

127

a 0 0 0a b c 0e1d

Use Mark bit + list ordering 
1. Not marked  in the set
2. Marked or missing  not in the set 

Lazy add() and remove() + Wait-free contains()

Problems with Locks

 What are the fundamental problems with locks?

 Blocking

 Threads wait, fault tolerance

 Especially when things like page faults occur in CR

 Overheads

 Even when not contended

 Also memory/state overhead

 Synchronization is tricky

 Deadlock, other effects are hard to debug

 Not easily composable
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Lock-free Methods

 No matter what:

 Guarantee minimal progress

I.e., some thread will advance

 Threads may halt at bad times (no CRs! No exclusion!)

I.e., cannot use locks!

 Needs other forms of synchronization

E.g., atomics (discussed before for the implementation of locks)

Techniques are astonishingly similar to guaranteeing mutual exclusion
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Trick 5: No Locking

 Make list lock-free

 Logical succession

 We have wait-free contains

 Make add() and remove() lock-free!

Keep logical vs. physical removal

 Simple idea:

 Use CAS to verify that pointer is correct before moving it
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a 0 0 0a b c 0e1c

(1) Logical Removal

(2) Physical 

Removal
Use CAS to verify pointer 

is correct 

Not enough! Why? 

Lock-free Lists

131

Problem…

132

a 0 0 0a b c 0e1c

(1) Logical Removal

(3) Physical 

Removal 0d

(2) Node 

added



The Solution: Combine Mark and Pointer
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a 0 0 0a b c 0e1c

(1) Logical Removal 

=

Set Mark Bit

(3) Physical

Removal CAS
0d

Mark-Bit and Pointer

are CASed together!

(2) Fail CAS: Node not 

added after logical 

Removal

Practical Solution(s)

 Option 1:
 Introduce “atomic markable reference” type

 “Steal” a bit from a pointer

 Rather complex and OS specific 

 Option 2:
 Use Double CAS (or CAS2) 

CAS of two noncontiguous locations

 Well, not many machines support it 

Any still alive?

 Option 3:
 Our favorite ISA (x86) offers double-width CAS

Contiguous, e.g., lock cmpxchg16b (on 64 bit systems)

 Option 4:
 TM!

E.g., Intel’s TSX (essentially a cmpxchg64b  (operates on a cache line))

134

Removing a Node
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a b d

remove 

b

remove 

c

c

Removing a Node

136

a b d

remove 

b

remove 

c

c

failed

CAS CAS

Removing a Node
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a b d

remove 

b

remove 

c

c

Uh oh – node marked but not removed!
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a d

remove 

b

remove 

c

Zombie node!



Dealing With Zombie Nodes

 Add() and remove() “help to clean up”

 Physically remove any marked nodes on their path

 I.e., if curr is marked: CAS (pred.next, mark) to (curr.next, false) and 
remove curr

If CAS fails, restart from beginning! 

 “Helping” is often needed in wait-free algs

 This fixes all the issues and makes the algorithm correct!
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Comments

 Atomically updating two variables (CAS2 etc.) has a non-trivial cost

 If CAS fails, routine needs to re-traverse list

 Necessary cleanup may lead to unnecessary contention at marked nodes

 More complex data structures and correctness proofs than for locked 
versions

 But guarantees progress, fault-tolerant and maybe even faster (that really 
depends)
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More Comments

 Correctness proof techniques

 Establish invariants for initial state and transformations

E.g., head and tail are never removed, every node in the set has to be 
reachable from head, …

 Proofs are similar to those we discussed for locks

Very much the same techniques (just trickier)

Using sequential consistency (or consistency model of your choice )

Lock-free gets somewhat tricky

 Source-codes can be found in Chapter 9 of “The Art of Multiprocessor 
Programming”
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Lock-free and wait-free

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number 
of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies 
lock-free)

 Was our lock-free list also wait-free?

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can 
be used for lock-/wait-free implementations of primitives in level z>x.
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Concept: Consensus Number

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve 
the consensus problem

 The consensus problem: 

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two 
conditions:

consistency: all threads get the same value

valid: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})
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Understanding Consensus

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol 
using any number of objects of class C and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class 
solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects 
out of class C. If class C has consensus number n, what does class D have?
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Starting simple …

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!
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Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome 
(show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used 
to determine one outcome for all possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each 
write)
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Atomic Registers

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of 
any object with consensus number of >1 using atomic registers
 “perhaps one of the most striking impossibility results in Computer 

Science” (Herlihy, Shavit)
 We need hardware atomics or TM!

 Proof technique borrowed from:

 Very influential paper, always worth a read!
 Nicely shows proof techniques that are central to parallel and distributed 

computing!
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Other Atomic Operations

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all 
functions where the op commutes or overwrites) have consensus 
number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!
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Compare and Set/Swap Consensus

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the 
Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not 
necessarily fast!)
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const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))

return  v; // I won!
else 

return proposed[thread]; // thread won
}

Now you know everything 

 Not really … ;-)

 We’ll argue about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications
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Remember: A Simple Model for Communication

 Transfer time T(s) = α+βs

 α = startup time (latency)

 β = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches  1/β asymptotically

 Convergence rate depends on α

 s1/2 = α/β

 Assuming no pipelining (new messages can only be issued from a 
process after all arrived) 
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Bandwidth vs. Latency

 s1/2 = α/β often used to distinguish bandwidth- and latency-

bound messages

 s1/2 is in the order of kilobytes on real systems
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asymptotic limit

Quick Example 

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Broadcasting s bytes among P processes:

 T(s) = (P-1) * (α+βs) = 

 Class question: Do you know a faster method to accomplish the 
same?
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k-ary Tree Broadcast

 Origin process is the root of the tree, passes messages to k neighbors 
which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple 
latency/bandwidth model?

 (for fixed k)

 Class Question: What is the optimal k? 



 Independent of P, α, βs? Really?
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Faster Trees?

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?
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Open Problems

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, 
Scan/Exscan, …

 Implementations of those (check current MPI libraries )

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra) 
combined with practical experiments on large-scale machines (10,000+ 
processors)
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HPC Networking Basics

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the 
performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead
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Network DestinationSource

The LogP Model

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in 
communicating a message containing a word (or small number of 
words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is 
engaged in the transmission or reception of each message; during 
this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between 
consecutive message transmissions or consecutive message 
receptions at a processor. The reciprocal of g corresponds to the 
available per-processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit 
time for local operations and call it a cycle.
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The LogP Model
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Simple Examples

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o
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Simplifications

 o is bigger than g on some machines 

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1” 
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Benefits over Latency/Bandwidth Model

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms
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Example: Broadcasts

 Class Question: What is the LogP running time for a linear broadcast 
of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree 
broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree 
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)
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Example: Broadcasts

 Class Question: Approximate the LogP runtime for a binomial tree 
broadcast of a single packet (assume L > g!)? 

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree 
broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!
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Example: Broadcasts

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the 
LogP Model”
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Example: Optimal Broadcast

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives 
exactly once
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P=8, L=6, g=4, o=2

Optimal Broadcast Runtime

 This determines the maximum number of PEs (P(t)) that can be 
reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence 
(assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!
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[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

The Bigger Picture

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory 
concepts → Partitioned Global Address Space (PGAS)

171


