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Goals of this lecture

® Motivate you!

B What is parallel computing?
" And why do we need it?

B What is high-performance computing?
" What's a Supercomputer and why do we care?

B Basic overview of
" Programming models
Some examples
" Architectures
Some case-studies

®  Provide context for coming lectures



Let us assume ...

B . you were to build a machine like this ...

® ... we know how each part works
" There are just many of them!

Source: wikipedia

" Question: How many calculations per second are needed to emulate a brain?



Calculations per Second per $1,000

Exponential Growth of Computing

" Twentieth through twenty first century
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Science

Researchers Simulate Mouse Brain on
Computer

Michael Hoffman [Blog) - April 30, 2007 5:57 PM

All Human Brains

One Mouse Brain

One Insect Brain
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Can we do this today?



Flops (floating point operations)
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Human Brain - No Problem!

B .. notso fast, we need to understand how to program those
machines ...



Human Brain - No Problem!

Simulating 1 second of human brain activity
takes 82,944 processors

Pyan Whitwam 21 Comments

Scooped!

The brain is a deviously complex

Share This Article biological computing device that even
the fastest supercomputers in the

w436 123 e 108 24 world fail to emulate. Well, that's not

Bl P—— 228 g + ﬁ = entirely true anymore. Researchers at

the Okinawa Institute of Technology
Graduate University in Japan and
Forschungszentrum Julich in Germany have managed to simulate a single second of human
brain activity in a very, very powerful computer, Source: extremetech.com






Other problem areas: Scientific Computing

®  Most natural sciences are simulation driven or are moving towards
simulation

" Theoretical physics (solving the Schrodinger equation, QCD)
" Biology (Gene sequencing)

" Chemistry (Material science)

= Astronomy (Colliding black holes)

Medicine (Protein folding for drug discovery)

Meteorology (Storm/Tornado prediction)

Geology (QOil reservoir management, oil exploration)

and many more ... (even Pringles uses HPC)




Other problem areas: Commercial Computing

® Databases, data mining, search
" Amazon, Facebook, Google

® Transaction processing
" Visa, Mastercard

B Decision support
" Stock markets, Wall Street, Military applications

B Parallelism in high-end systems and back-ends
" Often throughput-oriented

" Used equipment varies from COTS (Google) to high-end redundant
mainframes (banks)



Other problem areas: Industrial Computing

®  Aeronautics (airflow, engine, structural mechanics,
electromagnetism)

®  Automotive (crash, combustion, airflow)

® Computer-aided design (CAD)

®  Pharmaceuticals (molecular modeling, protein folding, drug design)
B Petroleum (Reservoir analysis)

® Visualization (all of the above, movies, 3d)



What can faster computers do for us?

B Solving bigger problems than we could solve before!

" E.g., Gene sequencing and search, simulation of whole cells, mathematics
of the brain, ...

" The size of the problem grows with the machine power
— Weak Scaling

B  Solve today’s problems faster!

" E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars,
weapons, ...)

" The machine power grows with constant problem size
— Strong Scaling



High-Performance Computing (HPC)

® 3k.a. “Supercomputing”

nj
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® Question: define “Supercomputer



High-Performance Computing (HPC)

® 3k.a. “Supercomputing”

® Question: define “Supercomputer”!

= “Asupercomputer is a computer at the frontline of contemporary processing
capacity--particularly speed of calculation.” (Wikipedia)

= Usually quite expensive ($s and kWh) and big (space)

® HPCis a quickly growing niche market

" Not all “supercomputers”, wide base

" Important enough for vendors to specialize

= Very important in research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims’
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”
“Microsoft: Delivering High Performance Computing to the Masses”

)



The Top500 List

® A benchmark, solve Ax=b
" Asfast as possible! _, as big as possible *
" Reflects some applications, not all, not even many
" Very good historic data!

B  Speed comparison for computing centers, states, countries, nations,
continents =
" Politicized (sometimes good, sometimes bad)
" Yet, fun to watch



The Top500 List (June 2014)

RMAX RPEAK POWER
RANK SITE SYSTEM CORES [TFLOP/S) (TFLOP/S) (KW
1 MNational Super Computer Centerin Tianhe-2 [MilkyWay-2) - TH-IVB-FEP 3,120,000 33,8627 24,202 4 17,808
Guangzhou Cluster, Intel Xeon E3-25692 12C
China 2.200GHz, TH Express-2, Intel Xeon Phi
31S1P
NUDT
2 DOE/SC/0ak Ridge National Laboratory  Titan - Cray XK7 , Opteron 6274 16C 260,660 17,590.0 27,1125 8,209
United 5tates 2.200GHz, Cray Gemini interconnect,
NVIDIA K20x
Cray Inc.
3 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1,572,864 17,173.2 20,1327 7,890
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IBM
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Computational Science [AICS] Tofu interconnect
Japan Fujitsu
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IBEM
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Switzerland K20x
S A
7 King Abdullah University of Science and  Shaheen |l - Cray XC40, Xeon E5-26%98v3 196,608  5,537.0 7.235.2 2,834

Technology
Saudi Arabia

16C 2.3GHz, Aries interconnect
Cray Inc.



Piz Daint @ CSCS




March 19, 2013
Swiss 'GPU Supercomputer' Will Be Fastest
In Europe

Tiffany Tracer
Page: 1|2

The NVIDIA GFL Technology Conference is in full-swing today in San Jose, Calif. The
annual event kicked off this morning with a keynote from NVIDIA CEQ Jen-Hzun Huang,
who revealed that the Swiss National Supercomputing Center (CSC3) is building Europe's
fastest GPU-accelerated supercomputer, an extension of a Cray system that was
announced last year.

Az Cray Vice President, Storage & Data Managemenrt Barry Bolding told HFPCwire, this will
be the first Cray supercomputer equipped with Intel Xeon processors and NVIDA GFLUs.

CSCS is part of ETH Zurich, one of the top universities in the world and the alma mater of
Albert Einstein. The supercomputing center installed phase one of itz shiny new Cray
X C30 back in December 2012,



Blue Waters in 2009

This is why you need to understand
performance expectations well!




Blue Waters in 2012




History and Trends
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High-Performance Computing grows quickly

B Computers are used to automate many tasks

B still growing exponentially The

" New uses discovered continuously Economist ||| sesaiy
i || eesi T igitoataninddos
IDC, 2007: “The overall HPC server market grew The data dEI“ge

by 15.5 percent in 2007 to reach $11.6 billion [] AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT
while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to $54.4”

IDC, 2009: “expects the HPC technical server

market to grow at a healthy 7% to 8% yearly =
rate to reach revenues of $13.4 billion by 2015.” \ B
“The non-HPC portion of the server market was

WA ESEfs e g EEaey
actually down 20.5 per cent, to $34.6bn” JIRN

Source: The Economist



How to increase the compute power?
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How to increase the compute power?

Not an option anymore!

Clock-Speet™
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A more complete view
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So how to invest the transistors?

B  Architectural innovations
" Branch prediction, Tomasulo logic/rename register, speculative execution,

" Help only so much -+

B What else?

" Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell
B.E., GPUs, MIC

" We call this “cores” these days

= Also, more intelligent devices or higher bandwidths (e.g., DMA controller,
intelligent NICs)

Source: IBM Source: NVIDIA Source: Intel



Towards the age of massive parallelism

® Everything goes parallel
" Desktop computers get more cores
2,4,8, soon dozens, hundreds?
"  Supercomputers get more PEs (cores, nodes)
> 3 million today
> 50 million on the horizon
> 1 billion in a couple of years (after 2020)

B Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
A1l starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
A1 is executed while A2 is running
Usually requires separate resources!




Goals of this lecture

¥ Motivate you!

B What is parallel computing?
" And why do we need it?

B  What is high-performance computing?
" What's a Supercomputer and why do we care?

B Basic overview of
" Programming models
Some examples
" Architectures
Some case-studies

®  Provide context for coming lectures



Granularity and Resources

Activities Parallel Resource
"  Micro-code instruction ® Instruction-level parallelism

" Pipelining
" VLIW

® Superscalar

30



Resources and Programming

Parallel Resource Programming
® Instruction-level parallelism " Compiler
" Pipelining ® (inline assembly)
" VLIW ® Hardware scheduling

® Superscalar

31



Historic Architecture Examples - - -

B Systolic Array
®  Data-stream driven (data counters)
" Multiple streams for parallelism

" Specialized for applications (reconfigurable)

B Dataflow Architectures
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" Fine-grained, high overheads
Example: compute f = (a+b) * (c+d)

((a + b) * (c + d))

abcd

A4

ADD
ADD

l

b

I

W -

are

/ i Source: isi.edu

actor




Von Neumann Architecture

® Program counter © Inherently serial!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore

(fault tolerance) (ubiquituous)



Parallel Architectures 101

UMA NUMA
core core COI'EI COI'E| corel core| core core
| | | | | | | I
cache cache cache cache cache ] cache
| | | | | |
memory memory memory
)
Today'’s laptops Today’s servers
TDM RDMA

core corel COfeI core ‘/lr“at""o K core core core corel network

I I T T T cache
cache cache cache cache

| | l I | | B oma

imemo nemor Imemory| imemory| imemory| memory| memory| memory,

Yesterday’s clusters Today'’s clusters

B .. and mixtures of those



Programming Models

® Shared Memory Programming (SM/UMA)

Shared address space

Implicit communication

Hardware for cache-coherent remote memory access
Cache-coherent Non Uniform Memory Access (cc NUMA)

B (Partitioned) Global Address Space (PGAS)

Remote Memory Access
Remote vs. local memory (cf. ncc-NUMA)

® Distributed Memory Programming (DM)

Explicit communication (typically messages)
Message Passing

0 ¢
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memory
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UMA

memory

PGAS

0

@

memory|

imemory| memory
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Shared Memory Machines

® Two historical architectures:

" “Mainframe” - all-to-all connection
between memory, I/0O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?

Source: IBM



Shared Memory Machines

B Two historical architectures:
" “Mainframe” - all-to-all connection
between memory, I/0O and PEs

Often used if PE is the most expensive part
Bandwidth scales with P Source: IBM

PE Cost scales with P, Question: what about network cost?

Answer: Cost can be cut with multistage connections (butterfly)
" “Minicomputer” - bus-based connection

All traditional SMP systems

High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)
Low cost, extensible

IMC -Memory
Controller




Shared Memory Machine Abstractions

Any PE can access all memory
" Any I/O can access all memory (maybe limited)

OS (resource management) can run on any PE
" Can run multiple threads in shared memory
" Used since 40+ years

Communication through shared memory
" Load/store commands to memory controller
" Communication is implicit
" Requires coordination

Coordination through shared memory
" Complex topic
" Memory models
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Shared Memory Machine Programming

® Threads or processes

Communication through memory

®  Synchronization through memory or OS objects

Lock/mutex (protect critical region)

Semaphore (generalization of mutex (binary sem.))
Barrier (synchronize a group of activities)

Atomic Operations (CAS, Fetch-and-add)
Transactional Memory (execute regions atomically)

B Practical Models:

Posix threads

MPI-3

OpenMP

Others: Java Threads, Qthreads, ...
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An SMM Example: Compute Pi

B  Using Gregory-Leibnitz Series:
(=n)*
4 Zk 0 2k+1
" [terations of sum can be computed in parallel
" Needs to sum all contributions at the end

]

- 10 20 30 40 50

Source: mathworld.wolfram.com




Pthreads Compute Pi Example

int main( int argc, char *argv[] ) int n=10000;
{ double *resultarr;
// definitions ... int nthreads;

thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t

resultarr= (double*)malloc(nthreads * sizeof(double)); void “compute_pi(void “data) {

inti,j;

for (i=0: i<nthreads: 4} { int myid = (int)(long)data;

int ret = pthread_create( &thread_arr][i], NULL, double mypi, h, x, sum;
compute_pi, (void*) i);
} for (j=0; j<n; ++j) {
for (i=0; i<nthreads; ++i) { h =1.0/(double) n;
pthread_join( thread_arr[i], NULL): sum =0.0;
) for (i = myid + 1; i <= n; i += nthreads) {

x=h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}

mypi =h * sum;

pi = 0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is approximately %.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT)); }
) resultarr[myid] = mypi;

}



Additional comments on SMM

® OpenMP would allow to implement this example much simpler (but
has other issues)

B Transparent shared memory has some issues in practice:
" False sharing (e.g., resultarr[])
® Race conditions (complex mutual exclusion protocols)
= Little tool support (debuggers need some work)

B Achieving performance is harder than it seems!



Distributed Memory Machine Programming

Explicit communication between PEs fgw% gfl‘% 532 {i‘a
" Message passing or channels % g [ i g % i § | | % )
W/ W Y Y
Only local memory access, no direct access to [ I l [
remote memory memory]  fnemony|  fmemony|  fmemory
" No shared resources (well, the network) DM

Programming model: Message Passing (MPI, PVM)
" Communication through messages or group operations (broadcast, reduce,
etc.)
® Synchronization through messages (sometimes unwanted side effect) or
group operations (barrier)
" Typically supports message matching and communication contexts



DMM Example: Message Passing

Addess )

Local pocess
addess space

Ppcess P

Send X, Q,t

Match Receive Y,t P

Local pocess
addess space

Pocess Q

Addess Y

Source: John Mellor-Crummey

Send specifies buffer to be transmitted
Recv specifies buffer to receive into
Implies copy operation between named PEs

Optional tag matching

Pair-wise synchronization (cf. happens bhefore)

memory|

memoryj

memory

memory

DM



DMM MPI Compute Pi Example .« : 2 :

int main( int argc, char *argv[] ) { g é ' g g
// definitions |
MPL_Init(&arge,&argv); I | | |
MPI_Comm_size(MPI_COMM_WORLD, &nhumprocs); memory]  memory]| fmemory]  jmemory

MPI_Comm_rank(MPI_COMM_WORLD, &myid); b
double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}
t+=MPI_Wtime();

if (!myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPI_Finalize();



DMM Example: PGAS

B Partitioned Global Address Space
" Shared memory emulation for DMM
Usually non-coherent
= “Distributed Shared Memory”
Usually coherent

B Simplifies shared access to distributed data
" Has similar problems as SMM programming
" Sometimes lacks performance transparency
Local vs. remote accesses

B Examples:
" UPC, CAF, Titanium, X10, ...

memory

PGAS




How to Tame the Beast?

® How to program large machines?

® No single approach, PMs are not converging yet
" MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), ...

®  Architectures converge

" General purpose nodes connected by general purpose or specialized
networks

" Small scale often uses commodity networks
" Specialized networks become necessary at scale

Even worse: accelerators (not covered in this class, yet)




Practical SMM Programming: Pthreads

Covered in example, small set of functions for thread creation and management

User-level Threads Kernel-level Threads

JSISIcilEllSISls B8 e e ls
S

S J &
Uy

2



Practical SMM Programming: OpenMP

Source: OpenMP.org

®  Fork-join model

master thread " L 1 L1
# ----- 2 7 tmads N
. threads . L3
/ . threads .
parallel region parallel region parallel region
B  Types of constructs:
l master thread l master thread l master thread
FORK FORK FORK
| | | | + Tasks
JOIN JOIN JOIN
l master thread \ master thread \ master thread Source: Blaise Barney, LLNL



OpenMP General Code Structure

#include <omp.h>

main () {
int var1, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(vari, var2) shared(var3)
{
// Parallel section executed by all threads
// Other OpenMP directives
// Run-time Library calls
// All threads join master thread and disband
}

// Resume serial code

Source: Blaise Barney, LLNL



Practical PGAS Programming: UPC

B PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3

b
Shared
c[0], c[4] c[1], c[5] c[2], c[6] c[3], c[7]
d d d d
Private

®  Many helper library functions
" Collective and remote allocation
" Collective operations

B Complex consistency model



Practical DMM Programming: MPI-1

MPI_COMM_WORLD

© © o
@ @ 2
&
Py €
@
C ¢
o o o group1 group2 0 o o

©
© ©
©
%/
LY .
L\ @  communcaions

Collection of 1D address spaces

Helper Functions

\-/
gather
0 1 2 3
{0,0) {0,1) 02 | ©3)
4 5 6 7
(1,0) @y | w2 | 3
8 9 10 11
(20) @y | e | 23
12 13 14 15
(30) GL | 3G | 33
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reduction

many more
(>600 total)

Source: Blaise Barney, LLNL



Complete Six Function MPI-1 Example

#include <mpi.h>

int main(int argc, char **argv) {
int myrank, sbuf=23, rbuf=32;
MPL_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank ==0) {

MPI_Send(&sbuf, /* message buffer */
1, /* one data item */
MPL_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */
MPI_COMM_WORLD); /* default communicator */
} else {

MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

MPI_Finalize();
}



MPI-2/3: Greatly enhanced functionality

®  Support for shared memory in SMM domalns@ @ @ O O @ @ @

memory memory

NANNU

UMA

0 1 2 3

®  Support for Remote Memory Access Programming @ @ @ @

" Direct use of RDMA
" Essentially PGAS memory

B Enhanced support for message passing communication

1 2 3
" Scalable topologies
" More nonblocking features
DM

" ...Mmany more




MPI: de-facto large-scale prog. standard

Using MPI
Portable Parallel Programming

with the Message-Passing Interface

third edition

William Gropp
Ewing Lusk

Anthony Skjellum

Basic MPI

Using Advanced MPI
Modern Features of the

Message-Passing Interface

William Gropp

Torsten Hoefler

Rajeev Thakur

Ewing Lusk

Advanced MPI, including MPI-3




Accelerator example: CUDA

Hierarchy of Threads

Ho =t Devioe
Grid 1 Source: NVIDIA
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Accelerator example: CUDA

Host Code

#define N 10

int main( void ) {
int a[N], b[N], c[N];
int *dev_a, *dev_b, *dev _c;
// allocate the memory on the GPU
cudaMalloc( (void**)&dev_a, N * sizeof(int)
cudaMalloc( (void**)&dev_b, N * sizeof(int)
cudaMalloc( (void* *)&dev_c, N * sizeof(int)
// fill the arrays 'a’ and 'b' on the CPU
for (int i=0; i<N; i++) { a[i] = -i; b[i] =i *i; }
// copy the arrays 'a' and 'b' to the GPU

’

)
Ik
)

?

cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice );

add<<<N,1>>>(dev_a, dev_b, dev _c);
// copy the array 'c' back from the GPU to the CPU

cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost );

// free the memory allocated on the GPU

cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev _c);

The Kernel

__global__ void add( int *a, int *b, int *c) {
int tid = blockldx.x;
// handle the data at this index
if (tid < N)
c[tid] = a[tid] + b[tid];
}



OpenACC / OpenMP 4.0

B Aims to simplify GPU programming

¥  Compiler support
" Annotations!

#define N 10
int main( void ) {
int a[N], b[N], c[N];
#pragma acc kernels
for (inti=0;i<N; ++i)
c[i] = a[i] + blil;

}




More programming models/frameworks

® Not covered:
" SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
" Directives: OpenHMPP, PV M, ...
" PGAS: Coarray Fortran (Fortran 2008), ...
" HPCS: IBM X10, Fortress, Chapel, ...
" Accelerator: OpenCL, C++AMP, ...

®  This class will not describe any model in more detail!
" There are too many and they will change quickly (only MPI made it >15 yrs)

® No consensus, but fundamental questions remain:
" Data movement
" Synchronization
" Memory Models
" Algorithmics
" Foundations



Goals of this lecture

¥ Motivate you!

B What is parallel computing?
" And why do we need it?

B  What is high-performance computing?
" What's a Supercomputer and why do we care?

B Basic overview of
" Programming models
Some examples
" Architectures
Some case-studies

®  Provide context for coming lectures



Architecture Developments
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AMD Buldozer 16-core CPU die

Sources: various vendors



Case Study 1: IBM POWER?7 IH

(BW)

Blue Waters System

Building Block

SuperNode

(1024 cores)

Drawer

(256 cores)

SMP node
(32 cores)

P7 Chip
(8 cores)

Source: IBM/NCSA




POWERY7 Core

= Execution Units
= 2 Fixed point units
= 2 Load store units

= 4 Double precision floating point

= 1 Branch

= 1 Condition register

= 1 Vector unit

= 1 Decimal floating point unit
= 6 wide dispatch

= Recovery Function Distributed
=_1,2,4 Way SMT Support

= Qut of Order Execution

= 32KB |-Cache

= 32KB D-Cache

= 256KB L2
= Tightly coupled to core

Source: IBM/NCSA
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POWER7 Chip (8 cores)

Quad-chip MCM
® Base Technology

" 45 nm, 576 mm?
= 1.2 B transistors

. Chip o) m | o L e
= 4 FMAs/cycle/core pri L R Ay g EJJ L L

= 32 MB L3 (private/shared)
® Dual DDR3 memory
128 GiB/s peak bandwidth o P -
(1/2 byte/flop) - _. ': L _
= Clock range of 3.5 -4 GHz ' ' L s

o1 AT o TR

Source: IBM/NCSA 64



Quad Chip Module (4 chips)

32 cores

= 32 cores*8 F/core™4 GHz=1TF

4 threads per core (max)

" 128 threads per package
4x32 MiB L3 cache

= 512 GB/s RAM BW (0.5 B/F)
800 W (0.8 WIF)

Source: IBM/NCSA




Adding a Network Interface (Hub)

B Connects QCM to PCl-e

= Two 16x and one 8x PCl-e slot

® Connects 8 QCM's via low
latency, high bandwidth,
copper fabric.

" Provides a message passing
mechanism with very
high bandwidth

" Provides the lowest possible
latency between 8 QCM's

Source: IBM/NCSA




1.1 TB/s POWER7 IH HUB

B 192 GB/s Host Connection
B 336 GB/s to 7 other local nodes
B 240 GB/s to local-remote nodes

B 320 GB/s to remote nodes

® 40 GB/s to general purpose I/O
® cf. “The PERCS interconnect” @HotI’10

Source: IBM/NCSA



P7 IH Drawer

* 8 nodes
* 32 chips

* 256 cores

First Level Interconnect
> L-Local

> HUB to HUB Copper Wiring

> 256 Cores

Source: IBM/NCSA
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POWERY IH Drawer @ SC09




P7 IH Supernode

P7- IH Board Lay 6
2nd Level of Interconnect 24 cores )

2" Level Interconnect (1,024 cores)

Second Level Interconnect
= Optical ‘L-Remote’ Links from HUB

= 4 drawers

" 1,024 Cores ﬂ ﬂ

= \ BW of 1150
10G-E ports

Source: IBM/NCSA



Case Study 2: IBM Blue Gene/Q packaging

2. Module 3. Compute Card
Single Chip One single chip module,
4. Node Card
16 GB DDR3 Memo
1. Chip 16 ; ﬂgﬁ 32 Compute Cards,
16 cores ~ Optical Modules, Link Chips, Torus

16 5b. 1/0 Drawer
8 1/0 Cards 6: Rack
8 PCle Gen2 slots 2 Midplanes

1,2 or 41/0 Drawers

7. System
20PFIs

5a. Midplane
16 Node Cards

~2 Mio

8192
Source: IBM, SC10



Blue Gene/Q Compute chip

System-on-a-Chip design : integrates processors, B 360 mm? Cu-45 technology (SOIl)
memory and networking Iogic into a single chip " ~ 1.47 B transistors

e i ® 16 user + 1 service processors
" plus 1 redundant processor
" all processors are symmetric
" each 4-way multi-threaded
" 64 bits PowerISA™
" 1.6 GHz
| | = " L11/D cache = 16kB/16kB
i L2 ”‘ ;-:3 L " L1 prefetch engines
b 2 . ® each processor has Quad FPU
(4-wide double precision, SIMD)
" peak performance 204.8 GFLOPS@55W

B Central shared L2 cache: 32 MB
" eDRAM

" multiversioned cache/transactional
memory/speculative execution.

" supports atomic ops

X
b
a
r
s
W
1
it]

i

® Dual memory controller
" 16 GB external DDR3 memory
" 1.33Gb/s
= 2 * 16 byte-wide interface (+ECC)

®  Chip-to-chip networking
" Router logic integrated into BQC chip.

Source: IBM, PACT'11



Blue Gene/Q Network

EREScning O 1| Mook i Ak &
oo I R S  G _.?rl. [

® On-chip external network
B Message Unit
® Torus Switch
B Serdes
® Everything!
® Only 55-60 W per node
® Top of Green500 and
GreenGraph500

L
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Source: IBM, PACT'11



Case Study 3: Cray Cascade (XC30)

B Biggest current installation at CSCS! =
" >2k nodes

B Standard Intel x86 Sandy Bridge Server-class CPUs

L e e

FEREEERRRELE

- ol i \ ~ . —  —  — A - backplanes
I e~ »‘- F ? " “ “ 4~ connected with
/- (. copper cables in a
mmymthhmmmmwh e

N o .}‘-m n r ‘- n r_ ‘t ‘h tr_ t!-__ \‘A \‘n \'— \‘-s “- “Black Network”

(e
Y Wy Wy Sy Wy W’ —-— |- lf 1/
| | | | I \

e

Optical cables
interconnect
groups
“Blue Network”

e/é%\;ts

Aries connected by

4 nodes connect backplane
to a single Aries “Green Network”

Source: Bob Alverson, Cray




Cray Cascade Network Topology

®  All-to-all connection among groups (“blue network”)

Group 0 Group 1 Group 2 Group 3

Source: Bob Alverson, Cray

®  What does that remind you of?

Group 5

Group 6

75



Goals of this lecture

¥ Motivate you!

B What is parallel computing?
" And why do we need it?

B  What is high-performance computing?
" What's a Supercomputer and why do we care?

B Basic overview of
" Programming models
Some examples
" Architectures
Some case-studies

B Provide context for coming lectures



DPHPC Lecture

®  You will most likely not have access to the largest machines
" But our desktop/laptop will be a “large machine” soon
" HPC is often seen as “Formula 1” of computing (architecture experiments)

¥ DPHPC will teach you concepts!
" Enable to understand and use all parallel architectures
" From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI - same concepts, different syntax
® No particular language (but you should pick/learn one for your project!)
Parallelism is the future:

WE NEED TO FINISH YOUR
PROGRAM TWICE AS FAST,
SO TM ADDING A PERSON
TO HELP YOU.

YOU MIGHT NEED
TO TRAIN HIM

A LITTLE BEFORE
HES PRODUCTIVE.

TELL ME AGATIN
WHAT THE BIG
GLOLITIMNG
THIMG IS.

o\

urg Syndicats, lng. (HYC)

Faat

G Arpag E-mail; SCOTTADAMS®ACL.COM

J-F @ 1995 Unitad




Related classes in the SE focus

B 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2016
Lecturer: Prof. M. Vechev

B 263-2300-00L How to Write Fast Numerical Code

http://
www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16

/course.html

Spring 2016
Lecturer: Prof. M. Pueschel

B This list is not exhaustive!


http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

DPHPC Overview

DPHPC\\\\\\\
" locality parallelism
- Py \ T
-CE" - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 : cache coherency |
o3 | —1
1) memory . distributed |
o models ' algorithms '
&)
= locks group commu-
O lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law :

| |
2 : memory - PRAM o LogP ,
© | | I |
o a-B
S

I/O complexity
balance principles | balance principles Il
Little's Law scheduling
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