
Design of Parallel and High-Performance
Computing
Fall 2015
Lecture: Introduction

Instructor: Torsten Hoefler & Markus Püschel
TA: Timo Schneider

Goals of this lecture
 Motivate you!

 What is parallel computing?
 And why do we need it?

 What is high-performance computing?
 What’s a Supercomputer and why do we care?

 Basic overview of
 Programming models

Some examples
 Architectures

Some case-studies

 Provide context for coming lectures

2

Let us assume …
 … you were to build a machine like this …

 … we know how each part works
 There are just many of them!
 Question: How many calculations per second are needed to emulate a brain?

3

Source: wikipedia

4

Source: www.singularity.com Can we do this today?

5

Source: www.singularity.com Blue Waters, ~13 PF (2012)

Tianhe-2, ~55 PF (2013)

1 Exaflop! ~2023?

Human Brain – No Problem!
 … not so fast, we need to understand how to program those

machines …

6

Human Brain – No Problem!

7

Scooped!

Source: extremetech.com

Under the Kei Computer

8

Other problem areas: Scientific Computing
 Most natural sciences are simulation driven or are moving towards

simulation
 Theoretical physics (solving the Schrödinger equation, QCD)
 Biology (Gene sequencing)
 Chemistry (Material science)
 Astronomy (Colliding black holes)
 Medicine (Protein folding for drug discovery)
 Meteorology (Storm/Tornado prediction)
 Geology (Oil reservoir management, oil exploration)
 and many more … (even Pringles uses HPC)

9

Other problem areas: Commercial Computing

 Databases, data mining, search
 Amazon, Facebook, Google

 Transaction processing
 Visa, Mastercard

 Decision support
 Stock markets, Wall Street, Military applications

 Parallelism in high-end systems and back-ends
 Often throughput-oriented
 Used equipment varies from COTS (Google) to high-end redundant

mainframes (banks)

10

Other problem areas: Industrial Computing
 Aeronautics (airflow, engine, structural mechanics,

electromagnetism)

 Automotive (crash, combustion, airflow)

 Computer-aided design (CAD)

 Pharmaceuticals (molecular modeling, protein folding, drug design)

 Petroleum (Reservoir analysis)

 Visualization (all of the above, movies, 3d)

11

What can faster computers do for us?
 Solving bigger problems than we could solve before!

 E.g., Gene sequencing and search, simulation of whole cells, mathematics
of the brain, …

 The size of the problem grows with the machine power
 Weak Scaling

 Solve today’s problems faster!
 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars,

weapons, …)
 The machine power grows with constant problem size
 Strong Scaling

12

High-Performance Computing (HPC)
 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

13

High-Performance Computing (HPC)
 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!
 “A supercomputer is a computer at the frontline of contemporary processing

capacity--particularly speed of calculation.” (Wikipedia)
 Usually quite expensive ($s and kWh) and big (space)

 HPC is a quickly growing niche market
 Not all “supercomputers”, wide base
 Important enough for vendors to specialize
 Very important in research settings (up to 40% of university spending)

“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance
Computing”
“Microsoft: Delivering High Performance Computing to the Masses”

14

The Top500 List
 A benchmark, solve Ax=b

 As fast as possible! as big as possible
 Reflects some applications, not all, not even many
 Very good historic data!

 Speed comparison for computing centers, states, countries, nations,
continents
 Politicized (sometimes good, sometimes bad)
 Yet, fun to watch

15

The Top500 List (June 2014)

16

Piz Daint @ CSCS

18

Blue Waters in 2009

This is why you need to understand
performance expectations well!

Imagine you’re designing a $500 M
supercomputer, and all you have is:

Blue Waters in 2012

History and Trends

21Source: Jack Dongarra

Single GPU/MIC Card

High-Performance Computing grows quickly
 Computers are used to automate many tasks

 Still growing exponentially
 New uses discovered continuously

22

Source: The Economist

IDC, 2007: “The overall HPC server market grew
by 15.5 percent in 2007 to reach $11.6 billion […]
while the same kinds of boxes that go into HPC
machinery but are used for general purpose
computing, rose by only 3.6 percent to $54.4”

IDC, 2009: “expects the HPC technical server
market to grow at a healthy 7% to 8% yearly
rate to reach revenues of $13.4 billion by 2015.”

“The non-HPC portion of the server market was
actually down 20.5 per cent, to $34.6bn”

How to increase the compute power?

23

4004
8008

8080

8085

8086

286 386 486

Pentium®
Processors

1

10

100

1000

10000

1970 1980 1990 2000 2010

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Source: Intel

Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Clock Speed:

How to increase the compute power?

24

4004
8008

8080

8085

8086

286 386 486

Pentium®
Processors

1

10

100

1000

10000

1970 1980 1990 2000 2010

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Source: Intel

Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Clock Speed:
Not an option anymore!

25
Source: Wikipedia

A more complete view

26

So how to invest the transistors?
 Architectural innovations

 Branch prediction, Tomasulo logic/rename register, speculative execution,
…

 Help only so much

 What else?
 Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell

B.E., GPUs, MIC
 We call this “cores” these days
 Also, more intelligent devices or higher bandwidths (e.g., DMA controller,

intelligent NICs)

27

Source: IBM Source: NVIDIA Source: Intel

Towards the age of massive parallelism
 Everything goes parallel

 Desktop computers get more cores
2,4,8, soon dozens, hundreds?

 Supercomputers get more PEs (cores, nodes)
> 3 million today
> 50 million on the horizon
1 billion in a couple of years (after 2020)

 Parallel Computing is inevitable!

28

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
 A1 starts at T1, ends at T2; A2 starts at T3, ends at T4
 Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
 A1 is executed while A2 is running
 Usually requires separate resources!

Goals of this lecture
 Motivate you!

 What is parallel computing?
 And why do we need it?

 What is high-performance computing?
 What’s a Supercomputer and why do we care?

 Basic overview of
 Programming models

Some examples
 Architectures

Some case-studies

 Provide context for coming lectures

29

Granularity and Resources

30

 Activities
 Micro-code instruction
 Machine-code instruction

(complex or simple)
 Sequence of machine-code

instructions:
Blocks
Loops
Loop nests
Functions
Function sequences

 Parallel Resource
 Instruction-level parallelism

 Pipelining
 VLIW
 Superscalar

 SIMD operations
 Vector operations

 Instruction sequences
 Multiprocessors
 Multicores
 Multithreading

Resources and Programming

31

 Parallel Resource
 Instruction-level parallelism

 Pipelining
 VLIW
 Superscalar

 SIMD operations
 Vector operations

 Instruction sequences
 Multiprocessors
 Multicores
 Multithreading

 Programming
 Compiler

 (inline assembly)
 Hardware scheduling

 Compiler (inline assembly)
 Libraries
 Compilers (very limited)
 Expert programmers

 Parallel languages
 Parallel libraries
 Hints

Historic Architecture Examples
 Systolic Array

 Data-stream driven (data counters)
 Multiple streams for parallelism
 Specialized for applications (reconfigurable)

 Dataflow Architectures
 No program counter, execute instructions when all input arguments are

available
 Fine-grained, high overheads

Example: compute f = (a+b) * (c+d)

32

Source: ni.com

Source: isi.edu

Von Neumann Architecture
 Program counter Inherently serial!

Retrospectively define parallelism in instructions and data

33

SISD
Standard Serial Computer

(nearly extinct)

SIMD
Vector Machines or Extensions

(very common)

MISD
Redundant Execution

(fault tolerance)

MIMD
Multicore

(ubiquituous)

Parallel Architectures 101

 … and mixtures of those

34

Today’s laptops Today’s servers

Yesterday’s clusters Today’s clusters

Programming Models
 Shared Memory Programming (SM/UMA)

 Shared address space
 Implicit communication
 Hardware for cache-coherent remote memory access
 Cache-coherent Non Uniform Memory Access (cc NUMA)

 (Partitioned) Global Address Space (PGAS)
 Remote Memory Access
 Remote vs. local memory (cf. ncc-NUMA)

 Distributed Memory Programming (DM)
 Explicit communication (typically messages)
 Message Passing

35

Shared Memory Machines

 Two historical architectures:
 “Mainframe” – all-to-all connection

between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?

36

Source: IBM

Shared Memory Machines

 Two historical architectures:
 “Mainframe” – all-to-all connection

between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P
PE Cost scales with P, Question: what about network cost?
Answer: Cost can be cut with multistage connections (butterfly)

 “Minicomputer” – bus-based connection
All traditional SMP systems
High latency, low bandwidth (cache is important)
Tricky to achieve highest performance (contention)
Low cost, extensible

37

Source: IBM

Shared Memory Machine Abstractions
 Any PE can access all memory

 Any I/O can access all memory (maybe limited)

 OS (resource management) can run on any PE
 Can run multiple threads in shared memory
 Used since 40+ years

 Communication through shared memory
 Load/store commands to memory controller
 Communication is implicit
 Requires coordination

 Coordination through shared memory
 Complex topic
 Memory models

38

Shared Memory Machine Programming
 Threads or processes

 Communication through memory

 Synchronization through memory or OS objects
 Lock/mutex (protect critical region)
 Semaphore (generalization of mutex (binary sem.))
 Barrier (synchronize a group of activities)
 Atomic Operations (CAS, Fetch-and-add)
 Transactional Memory (execute regions atomically)

 Practical Models:
 Posix threads
 MPI-3
 OpenMP
 Others: Java Threads, Qthreads, …

39

An SMM Example: Compute Pi

40

 Using Gregory-Leibnitz Series:

 Iterations of sum can be computed in parallel
 Needs to sum all contributions at the end

Source: mathworld.wolfram.com

Pthreads Compute Pi Example

41

int main(int argc, char *argv[])
{
 // definitions …
 thread_arr = (pthread_t*)malloc(nthreads * sizeof(pthread_t));
 resultarr= (double*)malloc(nthreads * sizeof(double));

 for (i=0; i<nthreads; ++i) {
 int ret = pthread_create(&thread_arr[i], NULL,
 compute_pi, (void*) i);
 }
 for (i=0; i<nthreads; ++i) {
 pthread_join(thread_arr[i], NULL);
 }
 pi = 0;
 for (i=0; i<nthreads; ++i) pi += resultarr[i];

 print ("pi is approximately %.16f, Error is %.16f\n",
 pi, fabs(pi - PI25DT));
 }

int n=10000;
double *resultarr;
int nthreads;

void *compute_pi(void *data) {
 int i, j;
 int myid = (int)(long)data;
 double mypi, h, x, sum;

 for (j=0; j<n; ++j) {
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += nthreads) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;
 }
 resultarr[myid] = mypi;
}

Additional comments on SMM
 OpenMP would allow to implement this example much simpler (but

has other issues)

 Transparent shared memory has some issues in practice:
 False sharing (e.g., resultarr[])
 Race conditions (complex mutual exclusion protocols)
 Little tool support (debuggers need some work)

 Achieving performance is harder than it seems!

42

Distributed Memory Machine Programming
 Explicit communication between PEs

 Message passing or channels

 Only local memory access, no direct access to
remote memory
 No shared resources (well, the network)

 Programming model: Message Passing (MPI, PVM)
 Communication through messages or group operations (broadcast, reduce,

etc.)
 Synchronization through messages (sometimes unwanted side effect) or

group operations (barrier)
 Typically supports message matching and communication contexts

43

 Send specifies buffer to be transmitted

 Recv specifies buffer to receive into

 Implies copy operation between named PEs

 Optional tag matching

 Pair-wise synchronization (cf. happens before)

DMM Example: Message Passing

44

Process P Process Q

Address Y

Address X

Send X, Q, t

Receive Y, P, tMatch

Local process
address space

Local process
address space

Source: John Mellor-Crummey

DMM MPI Compute Pi Example

45

int main(int argc, char *argv[]) {
 // definitions
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 double t = -MPI_Wtime();
 for (j=0; j<n; ++j) {
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 }
 t+=MPI_Wtime();

 if (!myid) {
 print("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
 print("time: %f\n", t);
 }

 MPI_Finalize();
}

DMM Example: PGAS
 Partitioned Global Address Space

 Shared memory emulation for DMM
Usually non-coherent

 “Distributed Shared Memory”
Usually coherent

 Simplifies shared access to distributed data
 Has similar problems as SMM programming
 Sometimes lacks performance transparency

Local vs. remote accesses

 Examples:
 UPC, CAF, Titanium, X10, …

46

How to Tame the Beast?
 How to program large machines?

 No single approach, PMs are not converging yet
 MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?), …

 Architectures converge
 General purpose nodes connected by general purpose or specialized

networks
 Small scale often uses commodity networks
 Specialized networks become necessary at scale

 Even worse: accelerators (not covered in this class, yet)

47

Practical SMM Programming: Pthreads

48

Kernel

User

CPU 0CPU 0 CPU 1CPU 1

Kernel
User

CPU 0CPU 0 CPU 1CPU 1

User-level Threads Kernel-level Threads

Covered in example, small set of functions for thread creation and management

Practical SMM Programming:
 Fork-join model

 Types of constructs:

Source: OpenMP.org

Source: Blaise Barney, LLNL

+ Tasks

OpenMP General Code Structure

50

#include <omp.h>

main () {
int var1, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(var1, var2) shared(var3)
{

// Parallel section executed by all threads
// Other OpenMP directives
// Run-time Library calls
// All threads join master thread and disband

}
// Resume serial code

}

Source: Blaise Barney, LLNL

Practical PGAS Programming: UPC
 PGAS extension to the C99 language

 Many helper library functions
 Collective and remote allocation
 Collective operations

 Complex consistency model

51

Practical DMM Programming: MPI-1

52Collection of 1D address spaces

Helper Functions

many more
(>600 total)

Source: Blaise Barney, LLNL

Complete Six Function MPI-1 Example

53

#include <mpi.h>

int main(int argc, char **argv) {
 int myrank, sbuf=23, rbuf=32;
 MPI_Init(&argc, &argv);

 /* Find out my identity in the default communicator */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 if (myrank == 0) {
 MPI_Send(&sbuf, /* message buffer */
 1, /* one data item */
 MPI_INT, /* data item is an integer */
 rank, /* destination process rank */
 99, /* user chosen message tag */
 MPI_COMM_WORLD); /* default communicator */
 } else {
 MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);
 print(“received: %i\n”, rbuf);
 }

 MPI_Finalize();
}

MPI-2/3: Greatly enhanced functionality
 Support for shared memory in SMM domains

 Support for Remote Memory Access Programming
 Direct use of RDMA
 Essentially PGAS

 Enhanced support for message passing communication
 Scalable topologies
 More nonblocking features
 … many more

54

MPI: de-facto large-scale prog. standard

55

Basic MPI Advanced MPI, including MPI-3

Accelerator example: CUDA

56

Hierarchy of Threads

Complex Memory Model

Simple Architecture

Source: NVIDIA

Accelerator example: CUDA

57

#define N 10
int main(void) {
 int a[N], b[N], c[N];
 int *dev_a, *dev_b, *dev_c;
 // allocate the memory on the GPU
 cudaMalloc((void**)&dev_a, N * sizeof(int));
 cudaMalloc((void**)&dev_b, N * sizeof(int));
 cudaMalloc((void**)&dev_c, N * sizeof(int));
 // fill the arrays 'a' and 'b' on the CPU
 for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i; }
 // copy the arrays 'a' and 'b' to the GPU
 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
 add<<<N,1>>>(dev_a, dev_b, dev_c);
 // copy the array 'c' back from the GPU to the CPU
 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
 // free the memory allocated on the GPU
 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void add(int *a, int *b, int *c) {
 int tid = blockIdx.x;
 // handle the data at this index
 if (tid < N)
 c[tid] = a[tid] + b[tid];
 }

The Kernel

Host Code

OpenACC / OpenMP 4.0
 Aims to simplify GPU programming

 Compiler support
 Annotations!

58

#define N 10
int main(void) {
 int a[N], b[N], c[N];
#pragma acc kernels
 for (int i = 0; i < N; ++i)
 c[i] = a[i] + b[i];
}

More programming models/frameworks
 Not covered:

 SMM: Intel Cilk / Cilk Plus, Intel TBB, …
 Directives: OpenHMPP, PVM, …
 PGAS: Coarray Fortran (Fortran 2008), …
 HPCS: IBM X10, Fortress, Chapel, …
 Accelerator: OpenCL, C++AMP, …

 This class will not describe any model in more detail!
 There are too many and they will change quickly (only MPI made it >15 yrs)

 No consensus, but fundamental questions remain:
 Data movement
 Synchronization
 Memory Models
 Algorithmics
 Foundations

59

Goals of this lecture
 Motivate you!

 What is parallel computing?
 And why do we need it?

 What is high-performance computing?
 What’s a Supercomputer and why do we care?

 Basic overview of
 Programming models

Some examples
 Architectures

Some case-studies

 Provide context for coming lectures

60

large cache-
coherent multicore
machines
communicating
through coherent
memory access
and remote direct
memory access

Architecture Developments

’00-’05<1999 ’06-’12 ’13-’20 >2020

distributed
memory
machines
communicating
through
messages

large cache-
coherent multicore
machines
communicating
through coherent
memory access
and messages

coherent and non-
coherent
manycore
accelerators and
multicores
communicating
through memory
access and remote
direct memory
access

largely non-
coherent
accelerators and
multicores
communicating
through remote
direct memory
access

Sources: various vendors

Case Study 1: IBM POWER7 IH
(BW)

62

On-line Storage

Near-line Storage

P7 Chip
(8 cores)

SMP node
(32 cores)

Drawer
(256 cores)

SuperNode
(1024 cores)

Building Block

Blue Waters System

NPCF

Source: IBM
Source: IBM/NCSA

POWER7 Core

63Source: IBM
Source: IBM/NCSA

POWER7 Chip (8 cores)

64

 Base Technology
 45 nm, 576 mm2

 1.2 B transistors

 Chip
 8 cores
 4 FMAs/cycle/core
 32 MB L3 (private/shared)
 Dual DDR3 memory

128 GiB/s peak bandwidth

(1/2 byte/flop)
 Clock range of 3.5 – 4 GHz

Quad-chip MCM

Source: IBM
Source: IBM/NCSA

Quad Chip Module (4 chips)

65

 32 cores

 32 cores*8 F/core*4 GHz = 1 TF

 4 threads per core (max)

 128 threads per package

 4x32 MiB L3 cache

 512 GB/s RAM BW (0.5 B/F)

 800 W (0.8 W/F)

Source: IBM
Source: IBM/NCSA

Adding a Network Interface (Hub)

66

 Connects QCM to PCI-e

 Two 16x and one 8x PCI-e slot

 Connects 8 QCM's via low
latency, high bandwidth,
copper fabric.

 Provides a message passing
mechanism with very
high bandwidth

 Provides the lowest possible
latency between 8 QCM's

Source: IBM
Source: IBM/NCSA

1.1 TB/s POWER7 IH HUB

67

 192 GB/s Host Connection

 336 GB/s to 7 other local nodes

 240 GB/s to local-remote nodes

 320 GB/s to remote nodes

 40 GB/s to general purpose I/O

 cf. “The PERCS interconnect” @HotI’10

Hub Chip

Source: IBM
Source: IBM/NCSA

P7 IH Drawer

68

First Level Interconnect
 L-Local

 HUB to HUB Copper Wiring

 256 Cores

• 8 nodes

• 32 chips

• 256 cores

Source: IBM
Source: IBM/NCSA

POWER7 IH Drawer @ SC09

P7 IH Supernode

70

Second Level Interconnect

 Optical ‘L-Remote’ Links from HUB

 4 drawers

 1,024 Cores

Source: IBM
Source: IBM/NCSA

1. Chip
16 cores

2. Module
Single Chip

4. Node Card
32 Compute Cards,

Optical Modules, Link Chips, Torus

5a. Midplane
16 Node Cards

6. Rack
2 Midplanes

1, 2 or 4 I/O Drawers

7. System
 20PF/s

3. Compute Card
One single chip module,

16 GB DDR3 Memory

5b. I/O Drawer
8 I/O Cards

8 PCIe Gen2 slots

Case Study 2: IBM Blue Gene/Q packaging

Source: IBM, SC10

16

16
16

512

8192

16384
~2 Mio

© Markus Püschel
Computer Science

Blue Gene/Q Compute chip
 360 mm² Cu-45 technology (SOI)

 ~ 1.47 B transistors

 16 user + 1 service processors
plus 1 redundant processor
all processors are symmetric
each 4-way multi-threaded
64 bits PowerISA™
1.6 GHz
 L1 I/D cache = 16kB/16kB
 L1 prefetch engines
each processor has Quad FPU

(4-wide double precision, SIMD)
peak performance 204.8 GFLOPS@55W

 Central shared L2 cache: 32 MB
eDRAM
multiversioned cache/transactional

memory/speculative execution.
 supports atomic ops

 Dual memory controller
16 GB external DDR3 memory
1.33 Gb/s
2 * 16 byte-wide interface (+ECC)

 Chip-to-chip networking
Router logic integrated into BQC chip.

System-on-a-Chip design : integrates processors,
memory and networking logic into a single chip

Source: IBM, PACT’11

Blue Gene/Q Network

73

 On-chip external network
 Message Unit
 Torus Switch
 Serdes
 Everything!

 Only 55-60 W per node
 Top of Green500 and

GreenGraph500

Source: IBM, PACT’11

Case Study 3: Cray Cascade (XC30)
 Biggest current installation at CSCS!

 >2k nodes

 Standard Intel x86 Sandy Bridge Server-class CPUs

74

Source: Bob Alverson, Cray

Cray Cascade Network Topology
 All-to-all connection among groups (“blue network”)

 What does that remind you of?

75

Source: Bob Alverson, Cray

Goals of this lecture
 Motivate you!

 What is parallel computing?
 And why do we need it?

 What is high-performance computing?
 What’s a Supercomputer and why do we care?

 Basic overview of
 Programming models

Some examples
 Architectures

Some case-studies

 Provide context for coming lectures

76

DPHPC Lecture
 You will most likely not have access to the largest machines

 But our desktop/laptop will be a “large machine” soon
 HPC is often seen as “Formula 1” of computing (architecture experiments)

 DPHPC will teach you concepts!
 Enable to understand and use all parallel architectures
 From a quad-core mobile phone to the largest machine on the planet!

MCAPI vs. MPI – same concepts, different syntax
 No particular language (but you should pick/learn one for your project!)

Parallelism is the future:

77

Related classes in the SE focus
 263-2910-00L Program Analysis

http://www.srl.inf.ethz.ch/pa.php
Spring 2016
Lecturer: Prof. M. Vechev

 263-2300-00L How to Write Fast Numerical Code
http://
www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16
/course.html

Spring 2016
Lecturer: Prof. M. Pueschel

 This list is not exhaustive!

78

http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

DPHPC Overview

79

	Slide 1
	Goals of this lecture
	Let us assume …
	Slide 4
	Slide 5
	Human Brain – No Problem!
	Human Brain – No Problem!
	Under the Kei Computer
	Other problem areas: Scientific Computing
	Other problem areas: Commercial Computing
	Other problem areas: Industrial Computing
	What can faster computers do for us?
	High-Performance Computing (HPC)
	High-Performance Computing (HPC)
	The Top500 List
	The Top500 List (June 2014)
	Piz Daint @ CSCS
	Slide 18
	Blue Waters in 2009
	Blue Waters in 2012
	History and Trends
	High-Performance Computing grows quickly
	How to increase the compute power?
	How to increase the compute power?
	Slide 25
	A more complete view
	So how to invest the transistors?
	Towards the age of massive parallelism
	Goals of this lecture
	Granularity and Resources
	Resources and Programming
	Historic Architecture Examples
	Von Neumann Architecture
	Parallel Architectures 101
	Programming Models
	Shared Memory Machines
	Shared Memory Machines
	Shared Memory Machine Abstractions
	Shared Memory Machine Programming
	An SMM Example: Compute Pi
	Pthreads Compute Pi Example
	Additional comments on SMM
	Distributed Memory Machine Programming
	DMM Example: Message Passing
	DMM MPI Compute Pi Example
	DMM Example: PGAS
	How to Tame the Beast?
	Practical SMM Programming: Pthreads
	Practical SMM Programming:
	OpenMP General Code Structure
	Practical PGAS Programming: UPC
	Practical DMM Programming: MPI-1
	Complete Six Function MPI-1 Example
	MPI-2/3: Greatly enhanced functionality
	MPI: de-facto large-scale prog. standard
	Accelerator example: CUDA
	Accelerator example: CUDA
	OpenACC / OpenMP 4.0
	More programming models/frameworks
	Goals of this lecture
	Architecture Developments
	Case Study 1: IBM POWER7 IH (BW)
	POWER7 Core
	POWER7 Chip (8 cores)
	Quad Chip Module (4 chips)
	Adding a Network Interface (Hub)
	1.1 TB/s POWER7 IH HUB
	P7 IH Drawer
	Slide 69
	P7 IH Supernode
	Case Study 2: IBM Blue Gene/Q packaging
	Blue Gene/Q Compute chip
	Blue Gene/Q Network
	Case Study 3: Cray Cascade (XC30)
	Cray Cascade Network Topology
	Goals of this lecture
	DPHPC Lecture
	Related classes in the SE focus
	DPHPC Overview

