spcl.inf.ethz.ch

Y @spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)
Chapter 6: Demand Paging s

spcl.inf.ethz.ch
Y @spcl_eth

Page Table Structures

spcl.inf.ethz.ch
Y @spcl_eth

Page table structures

= Problem: simple linear page table is too big

= Solutions:
1. Hierarchical page tables
2. Virtual memory page tables
3. Hashed page tables
4. Inverted page tables

spcl.inf.ethz.ch
Y @spcl_eth

Page table structures

= Problem: simple linear page table is too big
= Solutions: }

Saw these last

1. Hierarchical page tables
Semester.

Virtual memory page tables (VAX)

2.
3. Hashed page tables
4. Inverted page tables

spcl.inf.ethz.ch
Y @spcl_eth

#3 Hashed Page Tables

= VPN is hashed into table

» Hash bucket has chain of logical->physical page mappings
= Hash chain is traversed to find match.
= Can be fast, but can be unpredicable

= Often used for
= Portability
» Software-loaded TLBs (e.g., MIPS)

spcl.inf.ethz.ch
Y @spcl_eth

Hashed Page Table

physical
address

Q. €

>

logical D
address

physical
) S Y o r (] P oo o memOl'y

hash table

lo
©

spcl.inf.ethz.ch
Y @spcl_eth

#4 Inverted Page Table

= One system-wide table now maps PFN -> VPN
» One entry for each real page of memory
= Contains VPN, and which process owns the page

= Bounds total size of all page information on machine
» Hashing used to locate an entry efficiently

= Examples: PowerPC, ia64, UltraSPARC

Inverted Page Table Architecture

CPU

—>pid| p

logical
address

d

search l

pid

d

physical

| address

Jreasy

page table

>

Physical
memory

spcl.inf.ethz.ch
Y @spcl_eth

spcl.inf.ethz.ch
Y @spcl_eth

The need for more bookkeeping

= Most OSes keep their own translation info

» Per-process hierarchical page table (Linux)

» System wide inverted page table (Mach, MacOS)
= Why?

= Portability

» Tracking memory objects

» Software virtual — physical translation

» Physical — virtual translation

spcl.inf.ethz.ch
Y @spcl_eth

TLB shootdown

spcl.inf.ethz.ch
Y @spcl_eth

TLB management

= Recall: the TLB is a cache.

= Machines have many MMUs on many cores
= many TLBs

= Problem: TLBs should be coherent. Why?

= Security problem if mappings change
= E.g., when memory is reused

spcl.inf.ethz.ch
Y @spcl_eth

TLB management

Process ID VPN PPN | acces

Core 1 0 0x0053 | 0x03 | r/w
TLB: 1 0x20f8 0Ox12 r/w

Core 2 0 0x0053 | 0x03 | r/w
TLB: 1 0x0001 | 0x05 | read

Core 3 0 0x20f8 0x12 r/w

TLB: 1 0x0001 | 0x05 | read

spcl.inf.ethz.ch

Y @spcl_eth

TLB management

Process ID VPN PPN | acces

S Change

Core 1 0 0x0053 | 0x03 | r/w ¢ tooﬁsd
TLB: 1 0x20f8 0Ox12 r/w
Core 2 0 0x0053 | 0x03 riw
TLB: 1 0x0001 | O0x05 | read
Core 3 0 0x20f8 0x12 riw
TLB: 1 0x0001 | O0x05 | read

spcl.inf.ethz.ch

Y @spcl_eth

TLB management

Process ID VPN PPN | acces

S Change

Core 1 0 0x0053 | 0x03 | r/w ¢ tooﬁsd
TLB: 1 0x20f8 0Ox12 r/w
Core 2 0 ox§G3 | 0x03 | riw
TLB: 1 0x0001 | O0x05 | read
Core 3 0 0x20f8 0x12 riw
TLB: 1 0x0001 | O0x05 | read

spcl.inf.ethz.ch

Y @spcl_eth

TLB management

Process ID VPN PPN | acces
S Change
Core 1 0 0x0053 | 0x03 | r/w ¢ tooﬁad
TLB: 1 0x20f8 | 0x12 | riw y
Core 2 0 ox§G3 | 0x03 | riw
TLB: 1 0x0001 | 0x05 | read
Core 3 0 0x20f8 0x12 riw
TLB: 1 0x0001 | O0x05 | read

Process 0 on core 1 can only continue once shootdown is complete!

spcl.inf.ethz.ch
Y @spcl_eth

Keeping TLBs consistent

1. Hardware TLB coherence
. Integrate TLB mgmt with cache coherence
. Invalidate TLB entry when PTE memory changes
. Rarely implemented
2. \Virtual caches
. Required cache flush / invalidate will take care of the TLB

. High context switch cost!
= Most processors use physical caches

5. Software TLB shootdown
. Most common
= OS on one core notifies all other cores - Typically an IPI
. Each core provides local invalidation
6. Hardware shootdown instructions
. Broadcast special address access on the bus
. Interpreted as TLB shootdown rather than cache coherence message
. E.g., PowerPC architecture

spcl.inf.ethz.ch
Y @spcl_eth

Our Small Quiz

= True or false (raise hand)
= Base (relocation) and limit registers provide a full virtual address space
» Base and limit registers provide protection
= Segmentation provides a base and limit for each segment
= Segmentation provides a full virtual address space
= Segmentation allows shared libraries
= Segmentation provides linear addressing
= Segment tables are set up for each process in the CPU
= Segmenting prevents internal fragmentation
= Paging prevents internal fragmentation
» Protection information is stored at the physical frame
= Pages can be shared between processes
* The same page may be writeable in proc. A and write protected in proc. B

* The same physical address can be references through different addresses
from (a) two different processes — (b) the same process?

» |nverted page tables are faster to search than hierarchical (asymptotically)

spcl.inf.ethz.ch
Y @spcl_eth

Today

= Uses for virtual memory
= Copy-on-write
= Demand paging
» Page fault handling
= Page replacement algorithms

» Frame allocation policies
= Thrashing and working set

spcl.inf.ethz.ch
Y @spcl_eth

Recap: Virtual Memory

= User logical memory # physical memory.

» Only part of the program must be in RAM for execution
=> Logical address space can be larger than physical address space

» Address spaces can be shared by several processes
= More efficient process creation

= Virtualize memory using software+hardware

spcl.inf.ethz.ch
Y @spcl_eth

The many uses of address translation

= Process isolation = Memory mapped files

= |PC = Virtual memory

= Shared code segments = Checkpoint and restart

= Program initialization = Persistent data structures

= Efficient dynamic memory allocation = Process migration

= Cache management = Information flow control

= Program debugging = Distributed shared memory

= Efficient I/O and many more ...

Copy-on-write (COW)

spcl.inf.ethz.ch
Y @spcl_eth

Recall fork ()

= Can be expensive to create a complete copy of the process’
address space
= Especially just to do exec ()!
= vfork (): shares address space, doesn’t copy
= Fast
= Dangerous — two writers to same heap

= Better: only copy when you know something is going to get
written

spcl.inf.ethz.ch
Y @spcl_eth

Copy-on-Write

= COW allows both parent and child processes to initially share
the same pages in memory

If either process modifies a shared page, only then is the page
copied

= COW allows more efficient process creation as only modified
pages are copied

* Free pages are allocated from a pool of zeroed-out pages

spcl.inf.ethz.ch
Y @spcl_eth

Example: processes sharing an area of memory

———> pageA [¢

M — page B [¢

—> pageC [¢— |

Process 1 physical Process 2
memory

spcl.inf.ethz.ch
Y @spcl_eth

Example: processes sharing an area of memory

Not necessarily
the same virtual
addresses
(but would be
after fork ())

———> pageA [¢

M — page B [¢

—> pageC [¢— |

Process 1 physical Process 2
memory

spcl.inf.ethz.ch
Y @spcl_eth

How does it work?

= [nitially mark all pages as read-only

= Either process writes = page fault
= Fault handler allocates new frame
» Makes copy of page in new frame
= Maps each copy into resp. processes writeable

= Only modified pages are copied
» Less memory usage, more sharing
» Cost is page fault for each mutated page

spcl.inf.ethz.ch
Y @spcl_eth

After process 1 writes to page C

——> pageA [€

M — page B [€

page C [« |

copy of
page C

Process 1 physical Process 2
memory

spcl.inf.ethz.ch
Y @spcl_eth

After process 1 writes to page C

page A W
= | Still read-only
page B] J
page C
copy of
page C
Process 1 physical Process 2

memory

spcl.inf.ethz.ch
Y @spcl_eth

After process 1 writes to page C

page A W
= | Still read-only
page B] J
| ~
age C
Now _ -
writeable copy of
- page C
Process 1 physical Process 2

memory

spcl.inf.ethz.ch
Y @spcl_eth

General principle

Mark a VPN as invalid or readonly
=> trap indicates attempt to read or write

On a page fault, change mappings somehow
Restart instruction, as if nothing had happened

General: allows emulation of memory as well as multiplexing.
» E.g. on-demand zero-filling of pages
= And...

spcl.inf.ethz.ch

Y @spcl_eth

Paging concepts

page O

page 1

page 2

page 3 /\

page table _
S physical disk
address
virtual space
address

space

spcl.inf.ethz.ch

Y @spcl_eth

Paging concepts

page 0 memory-resident
page

page 2
page 3 /\
—

page 1

page table _
page v phySicaI disk
address
virtual space
address

space

spcl.inf.ethz.ch

Y @spcl_eth

Paging concepts

page O

page 1

page 2

page 3 /\

. \\> .
Keep track of I\ -

where pages are

on disk
page table _
S physical disk
address
virtual space
address

space

spcl.inf.ethz.ch

Y @spcl_eth

Paging concepts

Write “dirty” pages
out to disk

page O

page 1

page 2

page 3 /\

: \\> .

Keep track of l

/

where pages are

on disk
page table _
S physical disk
address
virtual space
address

space

spcl.inf.ethz.ch
Y @spcl_eth

Paging concepts

page O

page 1

page 2

page 3

Read in pages from}\
disk on demand

page table

S physical disk
address
virtual space
address

space

spcl.inf.ethz.ch
Y @spcl_eth

Demand Paging

= Bring a page into memory only when it is needed
» Less I/O needed
» Less memory needed
» Faster response
= More users

= Turns RAM into a cache for processes on disk!

spcl.inf.ethz.ch
Y @spcl_eth

Demand Paging

= Page needed = reference (load or store) to it
» invalid reference = abort
= not-in-memory = bring to memory

= Lazy swapper — never swaps a page into memory unless page
will be needed

= Swapper that deals with pages is a pager
» Can do this with segments, but more complex

= Strict demand paging: only page in when referenced

spcl.inf.ethz.ch
Y @spcl_eth

Page Fault

o0k WON

If there is a reference to a page, first reference to that
page will trap to operating system:

page fault

. Operating system looks at another table to decide:

» |nvalid reference = abort
= Just not in memory

Get empty frame

Swap page into frame

Reset tables

Set validation bit = v

Restart the instruction that caused the page fault

spcl.inf.ethz.ch
Y @spcl_eth

Recall: handling a page fault

CPU Chip oTEA
(1) ”
CPU A > MMU 4—F Cache/ .
e Memory

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory

spcl.inf.ethz.ch
Y @spcl_eth

Recall: handling a page fault

Exception
|—— === === > Page fault handler
| 4
I
' ®
i I
CPU Chip PTEA
0 7
CPU VA > MMU < PTE Cache/ _
Disk
e Memory

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception

spcl.inf.ethz.ch
Y @spcl_eth

Recall: handling a page fault

Exception
j——————===== > Page fault handler
| 4
I
' o [V
i I
CPU Chip o BTEA N a
CPU VA > MMU < PTE Cache/ _
Disk
e Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception
5) Handler finds a frame to use for missing page

spcl.inf.ethz.ch
Y @spcl_eth

Recall: handling a page fault

Exception
j——————===== > Page fault handler
| 4
I
' o [V
i I
CRlC 0 o PTEA 0 - New page
CPU VA > MMU < PTE Cache/ _
Disk
e Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler finds a frame to use for missing page

6) Handler pages in new page and updates PTE in memory

Jreass

spcl.inf.ethz.ch
Y @spcl_eth

|—— === === > Page fault handler
| 4
I
I K —
CPU Chip ' P% e New page
o > <€
CPU VA > MMU < PTE Cache/ e
a e Memory

Disk

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler finds a frame to use for missing page

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

spcl.inf.ethz.ch
Y @spcl_eth

Performance of demand paging

= Page FaultRate0 <p<1.0
» if p =0 no page faults
» if p =1, every reference is a fault

= Effective Access Time (EAT)
EAT = (1 — p) Xx memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

spcl.inf.ethz.ch
Y @spcl_eth

Demand paging example

= Memory access time = 200 nanoseconds

= Average page-fault service time = 8 milliseconds

= EAT =(1-p)x200 + p (8 milliseconds)
=(1-p) x200+p x 8,000,000
=200 + p x 7,999,800

= If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

spcl.inf.ethz.ch
Y @spcl_eth

Page Replacement

spcl.inf.ethz.ch
Y @spcl_eth

What happens if there is no free frame?

= Page replacement — find “little used” resident page to discard or
write to disk
= “victim page”
= algorithm

» performance — want an algorithm which will result in minimum number of
page faults

= Same page may be brought into memory several times

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement

= Try to pick a victim page which won’t be referenced in the future
= Various heuristics — but ultimately it's a guess

= Use “modify” bit on PTE
= Don’t write “clean” (unmodified) page to disk
» Try to pick “clean” pages over “dirty” ones
(save a disk write)

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement

frame valid
A
N—
0 | f | victim
f Y
Page table
.

Physical
memory

Page replacement

frame valid

Page table

victim

Jreasy

1. Swap victim
page to disk

A

Physical
memory

—3 |

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement

frame valid

o

0 LI

f | victim

Jreasy

1. Swap victim
page to disk

A

2. Change victim
PTE to invalid

Page table

Physical
memory

—L

spcl.inf.ethz.ch
Y @spcl_eth

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement

frame valid
A
N—
0 | f | victim
0 i
Page table
3. Load desired
page in from disk - —
Physical

memory

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement

frame valid

4. Change fault
PTE to valid —

e f [victim ==

Page table

3. Load desired
page in from disk S

Physical
memory

spcl.inf.ethz.ch
Y @spcl_eth

Page replacement algorithms

= Want lowest page-fault rate

= Evaluate algorithm by running it on a particular
string of memory references (reference string)

and computing the number of page faults on
that string

= E.g.
7,0,

1,2,0,3,0,4,2,3,0,3,2,1, 2,0,
1,7,0,1

spcl.inf.ethz.ch
Y @spcl_eth

Page faults vs. number of frames

Very little memory:
thrashing (see

later) What we

V might
expect...

)

o)

®©

Q

Y

o

—

)

Q ¢ Plenty of
g = memory: more
Z Q doesn’t help

much

Number of
frames

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page
frames:

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page [
frames:

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

frames: 0

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

frames: 00

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

frames: 000

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

frames: 000 3

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page 717,72 22144 4|0
frames: 000 3

w
w
N
N
N

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page 717,72 22144 4|0 00
frames: 000 3

w
w
N
N
N
2N
N

spcl.inf.ethz.ch
Y @spcl_eth

FIFO (First-In-First-Out) page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page 71772 22144 4|0 00 7177
frames: 000 3133|222 111 17700
111 10/ 0/0/ 3|3 312 2 211

Here, 15 page faults.

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111

2|2
3

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

1111114

22 2
3|3

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445

212 21 11
313322

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 S
212 21 11 3
313322 2

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 5|95

22121 11 33 9 page faults

31332 2 2 | 4

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 5|95
212 21 11 313 9 page faults
313322 2 4

= 4 frames:

11111

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 5|95
212 21 11 313 9 page faults
313322 2 4

= 4 frames:

11111

w
A~ W DN
AW DN O

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 5|95
212 21 11 313 9 page faults
313322 2 4

= 4 frames:

17111 5 5/ 5 54 4
10 page faults!

222 211111 1]5

3|3 3/ 3/2 2|22

4 414,143 3 3

spcl.inf.ethz.ch
Y @spcl_eth

More memory is better?

Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
= 3 frames (3 pages can be in memory):

11111141445 5|95
212 21 11 313 9 page faults
313322 2 4

= 4 frames:

17111 5 5/ 5 54 4
10 page faults!

222 211111 1]5

3|3 3/ 3/2 2|22

4 414,143 3 3

Belady’s Anomaly: more frames = more page faults

oo G spcl.inf.ethz.ch
ETH:irich . f@’ W @spcl_eth

FIFO showing Belady’s Anomaly

—h
(0))

—
AN

—
N
4

Number of page faults
o

N A OO @

1 2 3 4 5 6
Number of frames

~I

spcl.inf.ethz.ch
Y @spcl_eth

Optimal algorithm

Replace page that will not be used for longest period of time

4 frames example:
12 3 412 5123 45

111

=> 6 page faults

o W DN
O (Colm G -3

2
3
4

How do you know this? — you can’t!
Used for measuring how well your algorithm performs

spcl.inf.ethz.ch
Y @spcl_eth

Optimal page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page 717,72 2 2 2 2 7
frames: 000 0 4 0 0 0
111 3 3 3 1 1

Here, 9 page faults.

spcl.inf.ethz.ch

Y @spcl_eth

Least Recently Used (LRU) algorithm

= Referencestring: 1 2 3 4 1 2 5 1 2 3 4

5
1 1 1115
2 2 22 2
3 5 5 4 4
4 4 3,33

= Counter implementation

= Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

» When a page needs to be changed, look at the counters to
determine which are to change

spcl.inf.ethz.ch
Y @spcl_eth

LRU page replacement

referencestring: 7 0 1 2 03 0423032120170 1

page 717,72 2 4. 4/4 0 1 1 1
frames: 000 0 0 0/3 3 3 0 0
111 3 31222 2 2 7

Here, 12 page faults.

spcl.inf.ethz.ch
Y @spcl_eth

LRU algorithm

= Stack implementation — keep a stack of page numbers in a
double link form:

» Page referenced:

move it to the top

requires 6 pointers to be changed
= No search for replacement

= General term: stack algorithms

» Have property that adding frames always reduces page faults (no Belady’s
Anomaly)

Use a stack to record most recent page references

4 v 0 71 01 2 1 2 7 1 2

Reference string / \

B I o
o

spcl.inf.ethz.ch
Y @spcl_eth

LRU approximation algorithms

= Reference bit
» With each page associate a bit, initially = 0
» When page is referenced bit set to 1
» Replace a page which is O (if one exists)
We do not know the order, however

= Second chance
= Need reference bit

» Clock replacement

» |f page to be replaced (in clock order) has reference bit = 1 then:
set reference bit 0
leave page in memory
replace next page (in clock order), subject to same rules

spcl.inf.ethz.ch
Y @spcl_eth

Second-chance (clock) page replacement algorithm

0
L. v
Next victim
(“clock hand”):> ! ,
1 Circular
Y queue
1 ' of
= pages
1
v
1

Reference \)

bits

spcl.inf.ethz.ch
Y @spcl_eth

Second-chance (clock) page replacement algorithm

£)
0
v
0
Next victim 2
(“clock hand”):>] . Circular
queue
1 ' of
= pages
1
v
1

Reference \)

bits

spcl.inf.ethz.ch
Y @spcl_eth

Second-chance (clock) page replacement algorithm

0
v
0
v
0 ; Circular
Next victim queue
> |1
(“clock hand”) ' of
5 pages
1
v
1

Reference \)

bits

spcl.inf.ethz.ch
Y @spcl_eth

Second-chance (clock) page replacement algorithm

0
v
0
v
0 Circular
. $ queue
of
. v
Next victim E pages
(“clock hand”) 9 :
1
v
1

Reference \)

bits

spcl.inf.ethz.ch
Y @spcl_eth

Frame allocation policies

spcl.inf.ethz.ch
Y @spcl_eth

Allocation of frames

= Each process needs minimum number of pages

= Example: IBM 370 — 6 pages to handle SS MOVE instruction:
» instruction is 6 bytes, might span 2 pages
= 2 pages to handle from
= 2 pages to handle to
= Two major allocation schemes
» fixed allocation
= priority allocation

spcl.inf.ethz.ch
Y @spcl_eth

Fixed allocation

Equal allocation
= all processes get equal share.

Proportional allocation
= Allocate according to the size of process

s, =size of process p, m = 64
S = Esi s, =10
m = total number of frames s, =127
: S, a £x64 5
a, = allocation for p, = E’xm ' 137
127

a, =——x64 =59
137

spcl.inf.ethz.ch
Y @spcl_eth

Priority allocation

= Proportional allocation scheme
= Using priorities rather than size

= If process P, generates a page fault, select:
1. one of its frames, or
2. frame from a process with lower priority

spcl.inf.ethz.ch
Y @spcl_eth

Global vs. local allocation

= Global replacement — process selects a
replacement frame from the set of all frames;
one process can take a frame from another

= Local replacement — each process selects from
only its own set of allocated frames

spcl.inf.ethz.ch
Y @spcl_eth

Thrashing

= If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
» |low CPU utilization

» operating system thinks that it needs to increase the degree of
multiprogramming

= another process added to the system

= Thrashing = a process is busy swapping pages in and
out

spcl.inf.ethz.ch
Y @spcl_eth

Thrashing

A
-
Q _
*c"gl' Thrashing
= begins!
>
D
o
@
=
Y
)
2
-]
>

Demand for virtual memory (e.g., more procs)

spcl.inf.ethz.ch
Y @spcl_eth

Demand paging and thrashing

= Why does demand paging work?
Locality model
» Process migrates from one locality to another
» Localities may overlap

= Why does thrashing occur?
2 size of locality > total memory size

spcl.inf.ethz.ch

Y @spcl_eth

Locality in a memory reference pattern

34 i A+ I i
| Ty T e 1 wtl s sl |
(] | vr
I
32 i
\[\H | lj “ |!' |f ‘lll ;-r “‘
i \’ T
/] Il VT I ||’J‘A 1 I Uj!f‘ u‘ 0 351--\
%0 :fp ‘ “”‘T“, ‘ 'H “l v\‘;' 1'%1
‘M“]]Il\[’ | ““‘ l|| jm:l I‘HII' willin
28
(23
3
S
o
S 26
S |‘
5 L
= i
24 - i‘f ”W a1
1 ‘ H A
! oo
T ¥ -
i M g b groopa et |
rerren) | {
22 uumu'w i sl 4 []']I Tt l 1
H”"'H" I "’lmmlun{l e Illl‘lmm ‘,,,"’,,,'. ‘.:
0 H JL ll‘“lu Hmml W] T8 -
8 20 i - UL) x‘m— -
g ‘ g | 1 |--MIII I i [“ m (ool
87 % ;\ ‘H";‘:“"“ AR T*'ﬂ‘*ﬂ m‘m j'l 2 i 1 I
< | o H | iy
S 1 g “Ilw i i ol
execution time ——»

spcl.inf.ethz.ch
Y @spcl_eth

Working-set model

= A = working-set window
= a fixed number of page references
= Example: 10,000 instruction

= WSS, (working set of Process P;) =
total number of pages referenced in the most recent A (varies in
time)
= A too small = will not encompass entire locality
= Atoo large = will encompass several localities
» A = o0 = will encompass entire program

spcl.inf.ethz.ch
Y @spcl_eth

Allocate demand frames

= D=2 WSS, = total demand frames
» |ntuition: how much space is really needed

= D>m= Thrashing

= Policy: if D > m, suspend some processes

spcl.inf.ethz.ch
Y @spcl_eth

Working-set model

Page reference string:

...2615777751623412344434344413234443444

spcl.inf.ethz.ch
Y @spcl_eth

Working-set model

Page reference string:

...2615777751623412344434344413234443444

s |
\

t

WS(t,) = {1,2,5,6,7}

spcl.inf.ethz.ch
Y @spcl_eth

Working-set model

Page reference string:

...2615777751623412344434344413234443444

s | s]
\ \

t by

WS(t,) = {1,2,5,6,7} WS(,) = {3,4}

spcl.inf.ethz.ch
Y @spcl_eth

Keeping track of the working set

= Approximate with interval timer + a reference bit
= Example: A=10,000

» Timer interrupts after every 5000 time units

= Keep in memory 2 bits for each page

» Whenever a timer interrupts shift+copy and sets the values of all reference
bits to O

= |f one of the bits in memory = 1 = page in working set

= Why is this not completely accurate?
» Hint: Nyquist-Shannon!

spcl.inf.ethz.ch
Y @spcl_eth

Keeping track of the working set

= Approximate with interval timer + a reference bit
= Example: A=10,000

» Timer interrupts after every 5000 time units

= Keep in memory 2 bits for each page

= Whenever a timer interrupts shift+copy and sets the values of all reference
bits to O

= |f one of the bits in memory = 1 = page in working set
= Why is this not completely accurate?
= Improvement = 10 bits and interrupt every 1000 time units

spcl.inf.ethz.ch
Y @spcl_eth

Page-fault frequency scheme

= Establish “acceptable” page-fault rate
= |f actual rate too low, process loses frame
» |f actual rate too high, process gains frame

A
Increase
number of
§ frames
©
"= Upper bound
o pp
(@)]
(4]
o
©
O Lower bound
)
(4]
n'd

\\ >
Number of \ Decrease

number of
fra mes frames

